共查询到20条相似文献,搜索用时 15 毫秒
1.
Highly chlorinated polyethylene‐graft‐methyl methacrylate (HCPE‐g‐MMA; HCPE with chlorine contents > 60%), obtained by a mechanochemistry reaction, is discussed in detail. A two‐roll mill was used in the process. The reaction conditions affecting the structure of HCPE‐g‐MMA copolymers were measured in terms of calculation of graft efficiency (GE), graft degree (GD), and copolymerization rate/homopolymerization rate (Rc/Rh) by 1H‐NMR spectroscopy. Based on these results, it is concluded that the chlorine contents of HCPE, the additional amount of MMA, and the mechanochemistry reaction time all have impacts on the structure of the polymer. The results also confirm that grafting is very much favored by the mechanochemistry reaction. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 811–816, 2003 相似文献
2.
改性炭黑增强三元乙丙橡胶的力学性能与加工性能 总被引:1,自引:0,他引:1
研究了用甲基丙烯酸缩水甘油酯(GMA)、甲基丙烯酸-2-羟乙酯(HEMA)和N-羟甲基丙烯酰胺(NMA)3种单体改性炭黑增强三元乙丙橡胶(EPDM)的力学性能,并用橡胶加工分析仪分析了GMA、HEMA和NMA改性炭黑对EPDM未硫化胶的加工性能。结果表明,GMA、HEMA和NMA改性炭黑均改善了EPDM硫化胶的力学性能,当其用量分别为3.75,3,3份时,EPDM硫化胶的定伸应力、拉伸强度和撕裂强度达到最佳值;降低频率、提高应变或温度有利于改善改性炭黑增强EPDM的加工性能。 相似文献
3.
Copolymers of N‐cyclohexylmaleimide (ChMI) and methyl methacrylate (MMA) were synthesized by the emulsion semibatch copolymerization method. The effects of the monomer mixture composition on the average molecular weight (Mn and Mw ), glass transition temperature (Tg), degradation temperature, mechanical properties, and rheological behavior of the copolymers were investigated. The results show that Mn and Mw have maximum values when the ChMI feed content was about 20% (by wt). The degradation temperature and Tg of the copolymers increase with increasing ChMI moieties in the copolymer. The mechanical properties (tensile strength and impact strength) decrease with an increasing ChMI feed content. All copolymers in the melt show pseudoplastic behavior. The flow index n increases with an increasing ChMI feed content. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1070–1075, 2002; DOI 10.1002/app.10394 相似文献
4.
Thermoset materials obtained from styrene/vinyl ester resins of different molecular weights modified with poly(methyl methacrylate) (PMMA) were prepared and studied. Scanning electron microscopy and transmission electron microscopy micrographs of the fracture surfaces allowed the determination of a two‐phase morphology of the modified networks. Depending on the molecular weight of the vinyl ester oligomer, the initial content of the PMMA additive, and the selected curing temperature, different morphologies were obtained, including the dispersion of thermoplastic‐rich particles in a thermoset‐rich matrix, cocontinuous structures, and the dispersion of thermoset‐rich particles in a thermoplastic‐rich matrix (phase‐inverted structure). Density measurements were performed to determine the effect of the PMMA‐modifier concentration and curing temperature on the volume shrinkage of the final materials. The development of cocontinuous or thermoplastic‐rich matrices was not too effective in controlling the volume shrinkage of the studied vinyl ester systems. The evaluation of the dynamic mechanical behavior, flexural modulus, compressive yield stress, and fracture toughness showed that the addition of PMMA increased the fracture resistance without significantly compromising the thermal or mechanical properties of the vinyl ester networks. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007 相似文献
5.
Ma. Josefina Lozano‐Gonzlez Ma. Teresa Rodriguez‐Hernandez Eduardo A. Gonzalez‐De Los Santos Jesus Villalpando‐Olmos 《应用聚合物科学杂志》2000,76(6):851-858
The effect of the multiple recycling of nylon‐6 by injection molding on its physical–mechanical properties and morphology was studied after each cycle of injection. These studies were made in order to know how many times it is possible to recycle the nylon‐6 without significant loss of the physical–mechanical properties. Optical and electronic microscopy were used to evaluated the morphology. Molecular weight changes were determinated by gel permeation chromatography (GPC). The nylon‐6 was recycled 10 times, until the eighth cycle the properties of the material did not suffered any change. Changes of 10–15% in the properties between nylon‐6 with 10 cycles of injection and virgin material were observed. An exception was the percentage of elongation that decreased 70% gradually until in the tenth cycle of injection. The results from GPC show that the molecular weight of nylon‐6 increased with recycling (Mw = 17% and Mn = 14%). With the reprocess was also observed the presence of gels. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 851–858, 2000 相似文献
6.
The processability characteristics and physico‐mechanical properties of natural rubber (NR) modified with raw rubber seed oil and epoxidized rubber seed oil have been studied. The modified mixes showed higher scorch time and lower cure rate, crosslink density, and ultimate state of cure compared to an unmodified mix. The thermal stability of the vulcanizates was practically unaffected by the modification. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 1413–1418, 2000 相似文献
7.
Morphology and mechanical properties of natural rubber latex films modified by exfoliated Na‐montmorillonite/polyethyleneimine‐g‐poly (methyl methacrylate) nanocomposites 下载免费PDF全文
Na‐montmorillonite/polyethyleneimine‐g‐poly(methyl methacrylate) (Na‐MMT/PEI‐g‐PMMA) nanocomposite latexes were prepared by soap‐free emulsion polymerization in the aqueous suspension of Na‐MMT. The exfoliated morphology of the nanocomposites was confirmed by XRD and TEM. With the aim of improving morphology and mechanical properties of natural rubber latex (NRL) films, the synthesized Na‐MMT/PEI‐g‐PMMA nanocomposites were mixed with NRL by latex compounding technology. The results of SEM and AFM analysis showed that the surface of NRL/Na‐MMT/PEI‐g‐PMMA film was smoother and denser than that of pristine NRL film while Na‐MMT was dispersed uniformly on the fracture surface of the modified films, which suggested the good compatibility between NRL and Na‐MMT/PEI‐g‐PMMA. The tensile strength of NRL/Na‐MMT/PEI‐g‐PMMA films was increased greatly by 85% with 10 phr Na‐MMT/PEI‐g‐PMMA when Na‐MMT content was 3 wt % and the elongation at break also increased from 930% to 1073% at the same time. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43961. 相似文献
8.
The article describes the preparation of cast copolymer sheets of methyl methacrylate with varying mole fractions of N‐(p‐methoxyphenyl) itaconimide/N‐(2‐methoxy‐5‐chlorophenyl) itaconimide/N‐(3‐methoxy‐5‐chlorophenyl) itaconimide monomers by bulk copolymerization using azobisisobutyronitrile as an initiator. The effect of incorporation of varying mole fractions of N‐arylsubstituted itaconimides in poly(methyl methacrylate) (PMMA) backbone on the thermal, optical and physicomechanical properties of cast acrylic sheets were evaluated. The glass transition temperature and the thermal stability increased with increasing amounts of itaconimides in the polymer backbone. An increase in tensile strength, flexural strength, and storage modulus was also observed. The impact strength decreased marginally upon incorporation of imides into the polymer backbone. A slight decrease in the transparency and a significant increase (4–50%) in the haze was observed. The chemical resistance of PMMA remains unaffected by copolymerization. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
9.
To improve the mechanical properties of poly(vinyl chloride) (PVC), the possibility of combining PVC with elastomers was considered. Modification of natural rubber (NR) by graft copolymerization with methyl methacrylate (MMA) and styrene (St) was carried out by emulsion polymerization by using redox initiator to provide an impact modifier for PVC. The impact resistance, dynamic mechanical analysis (DMA), and scanning electron microscopy (SEM) of St and MMA grafted NR [NR‐g‐(St‐co‐MMA)]/PVC (graft copolymer product contents of 5, 10, and 15%) blends were investigated as a function of the amount of graft copolymer product. It was found that the impact strength of blends was increased with an increase of the graft copolymer product content. DMA studies showed that NR‐g‐(St‐co‐MMA) has partial compatibility with PVC. SEM confirmed a shift from brittle failure to ductility with an increase graft copolymer content in the blends. The mechanical properties showed that NR‐g‐(St‐co‐MMA) interacts well with PVC and can also be used as an impact modifier for PVC. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1666–1672, 2004 相似文献
10.
Cellulase was immobilized directly on methyl methacrylate‐glycidyl methacrylate copolymer (MMA‐co‐GMA) and methyl methacrylate‐2‐hydroxy ethyl methacrylate copolymer (MMA‐co‐HEMA) by covalent attachment and crosslinking methods. The properties of the immobilized cellulase were investigated and compared with those of the free one. For the assays carried out through crosslinking method at 25°C and pH 7, the retained activities were found to be 91.92% and 74.63%, respectively, for MMA‐co‐GMA and MMA‐co‐HEMA crosslinked with 0.1% of 1‐cyclohexyl‐3‐(2‐morpholino‐ethyl) carbodiimide metho‐p‐toluenesulfonate (CMCT), respectively. The immobilized cellulase had better stability and higher retained activities with respect to pH, temperature, and storage stability than the free one. In the repeated use experiments, the immobilized cellulase using (MMA‐co‐GMA)‐CMCT (0.1%) and (MMA‐co‐HEMA)‐CMCT (0.1%) did not change after 10 and eight times of repeated use and maintained 67% and 62% from their original activities after 25 times, respectively. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 相似文献
11.
The thermal and mechanical properties of dental base materials cured by microwave and conventional heat methods were studied. The commercial dental base poly(methyl metacrylate) (PMMA) powder and liquid were mixed in a 3/1 ratio. They were polymerized by a peroxy catalyst at 65°C, then cured with a boiling water temperature and microwave radiation for periods of 5, 10, 15, 20, 25, 30, and 35 min for heat curing and 1, 2, 3, 5, and 7 min for microwave radiation. The microwave radiation outputs used were 500 and 700 W. The products of 5‐min heat curing and 1‐, 2‐, and 7‐min microwave curing were soluble in chloroform. All the others were partially soluble. The viscosity‐average molecular weights of the soluble samples were about 1 × 106. The thermal properties of the polymer samples were studied by differential scanning calorimetry (DSC). For the samples that were not cured completely, broad exothermic peaks at around 125°C were obtained in the DSC thermograms. The glass‐transition temperatures for completely cured samples were 110–120°C. The mechanical properties of the samples were determined from tensile and three‐point bending tests. The elastic modulus was highest for samples obtained by the conventional method with a 30‐min curing period. However, the bending modulus was highest for 7‐min cured samples in a 700‐W microwave. The mechanical strengths of the 700‐W output were higher than those at 500 W. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 251–256, 2003 相似文献
12.
Well‐defined poly(methyl methacrylate) (PMMA)‐grafted natural rubbers (NRs) were prepared to study the structure–property relationships. Syntheses were achieved by the photopolymerization of methyl methacrylate initiated by N,N‐diethyldithiocarbamate groups created beforehand in side positions on the NR chains. With this procedure, good control of the graft density and PMMA content could be obtained. Thermal, morphological, and mechanical properties of NR‐g‐PMMA copolymers were studied as a function of the NR/PMMA composition and graft density. NR‐g‐PMMAs containing 15–80% grafted PMMA showed characteristics of heterogeneous materials (characterized by two glass‐transition temperatures, those of PMMA and NR, in differential scanning calorimetry). Under these conditions, they developed the morphology of thermoplastic elastomers with PMMA nodules dispersed in the rubber matrix when the PMMA content was near 20%; conversely, they developed the morphology of softened thermoplastics with rubber nodules dispersed in PMMA when the PMMA content was near 80%. Graft copolymers containing about 20% PMMA remained essentially rubbery, but they were already different from pure NR. On the other hand, the thermal stability of NR wash improved after the introduction of PMMA grafts onto NR chains. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
13.
《应用聚合物科学杂志》2017,134(6)
Novel poly(methyl methacrylate) (PMMA)/silica aerogel bimodal cellular foams were prepared by melt mixing and a supercritical carbon dioxide foaming process. The effects of the silica aerogel content on the morphologies and thermal‐insulating and mechanical properties of the foams were investigated by scanning electron microscopy, mechanical tests, and heat‐transfer analysis. The experimental results show that compared to the pure PMMA foam, the PMMA/silica aerogel microcellular foams exhibited more uniform cell structures, decreased cell sizes, and increased cell densities (the densities of the foams were 0.38–0.45 g/cm3). In particular, a considerable number of original nanometric cells (ca. 50 nm) were evenly embedded in the cell walls and on the inner surfaces of the micrometric cells (<10 μm). A 62.7% decrease in the thermal conductivity (0.072 W m−1 K−1) in comparison to that of raw PMMA after 0.5 wt % silica aerogel was added was obtained. Mechanical analysis of the PMMA/silica aerogel foams with 5 and 2 wt % silica aerogel showed that the compressive and flexural strengths were distinctly improved by 92 and 52%, respectively, and the dynamic storage moduli increased. The enhanced performance showed that with the addition of silica aerogel into PMMA, one can obtain thermal‐insulation materials with a favorable mechanical strength. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44434. 相似文献
14.
C. Nakason A. Kaesaman A. Rungvichaniwat K. Eardrod S. Kiatkamjonwong 《应用聚合物科学杂志》2003,89(6):1453-1463
Graft copolymers of natural rubber (NR) and methyl methacrylate (MMA) were prepared using cumene hydroperoxide and tetraethylene pentamine as redox initiators via the semibatch emulsion polymerization technique. Various molar percentage ratios of NR/MMA were studied in the grafting reaction (i.e., 95/5, 90/10, 80/20, 70/30, and 60/40). The graft copolymer with a 70/30 molar ratio was selected and used to prepare rubber blends with cassava starch. The starch was used at levels of 0, 20, 40, and 60 phr. Another set of rubber blends was prepared for comparison purposes. The NR‐g‐poly(MMA) (PMMA, 75 phr) was blended with 25 phr of NR air dried sheets (ADS) and a given level of the cassava starch. We found that the Mooney viscosity, shear stress, and shear viscosity increased with an increasing concentration of cassava starch. This may be attributed to the chemical interactions between the polar groups of the NR‐g‐PMMA and the cassava starch. The blends were later compounded using a compounding formulation according to ASTM D 3184‐89. A similar short delay onset of vulcanization (i.e., approximately 1 min) was observed for the whole set of compounds under study. However, different curing characteristics were observed for the blends of NR‐g‐PMMA–cassava starch and NR‐g‐PMMA–ADS–cassava starch. The NR‐g‐PMMA–cassava starch compounds exhibited two‐stage curing characteristics. The curing curve had a slight reversion at a testing time of approximately 8 min. The shear modulus then abruptly increased with an increasing testing time in the range of 20–60 min. The curing curves for NR‐g‐PMMA–ADS–cassava starch blends exhibited a single curing stage with a shear modulus that increased slightly with the testing time was increased from 20 to 60 min. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1453–1463, 2003 相似文献
15.
Jitang Fan 《应用聚合物科学杂志》2018,135(17)
Strain rate dependency is an important issue for the mechanical response of materials in impact events. Dynamic mechanical properties of a high‐strength poly(methyl methacrylate) (PMMA) were studied by using split Hopkinson pressure bar technology. The maximum stress is enhanced with the increase of strain rate, and then keeps a constant with the further increase of strain rate, which is accompanied with a linear increase of fracture energy density. The critical data of strain rate and maximum stress were determined. Eyring's equation was applied for analyzing the influence factors, which relate to the hardening induced by strain rate and softening caused by adiabatic temperature rise. Inherent physical mechanisms were clarified and the strategies for designing advanced impact‐resistant polymers were proposed. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46189. 相似文献
16.
Heng Zhou Feng Liu Yongsheng Zhang Weifeng Fan Jingfeng Liu Zhen Wang Tong Zhao 《应用聚合物科学杂志》2011,122(5):3493-3503
Two novel acetylene‐terminated isoimide oligomers and their corresponding imide oligomers have been synthesized by using trifluoroacetic anhydride or acetic anhydride as dehydrating agent, respectively. Their main structure was confirmed by Fourier transform infrared spectroscopy (FTIR). The isoimide oligomers were amorphous and showed excellent solublility in many common solvents, such as acetone and tetrahydeofuran, whereas the imide oligomers cannot dissolve in them. Differential scanning calorimetry and rheometer were used to study crosslinking behavior and processability of these oligomers. The isoimide oligomers exhibited considerably wider processing window and lower viscosity compared with imide ones. As expected, the isoimide form could be converted to imide form through thermal treatment, which could be demonstrated by FTIR. After the oligomers were cured, the polyisoimides showed similar properties compared with corresponding polyimides. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
17.
The graft copolymerization of maleic anhydride (MAH) onto acrylonitrile‐butadiene‐styrene terpolymer (ABS) using dicumyl peroxide and benzoyl peroxide as the binary initiator and styrene as the comonomer in the molten state was described. The properties and phase morphologies of the modified products (ABS‐g‐MAH) were studied. The results indicate that the melt flow index (MFI) of ABS‐g‐MAH increases with the increase of MAH content, the initiator concentration, and the screw speed, whereas the MFI decreases with the increase of temperature. The impact strength and the percentage elongation of ABS‐g‐MAH both decreased and the tensile strength of ABS‐g‐MAH increased slightly as the grafting degree increased. The phase inversion behavior of the modified product was observed by transmission electron microscopy. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2834–2839, 2004 相似文献
18.
The effect of addition of methacrylate polymer into a one‐component epoxy resin, containing Epikote 828 and diimine as a water‐initiated hardener, was examined. Although the cured epoxy resin in the presence of methyl methacrylate–butyl acrylate (MMA–BA) copolymer was very brittle, the resin containing MMA–BA–[γ‐(methacryloxy)propyl]trimethoxysilane (TMSMA) copolymer showed good mechanical and adhesive properties. The adhesive strength of the cured epoxy resin containing MMA–BA–TMSMA copolymer was much higher than that without its polymer. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1943–1949, 2005 相似文献
19.
Effect of grafting yield and molecular weight of m‐TMI‐grafted‐PP on the mechanical properties of wood fiber filled polypropylene composites 下载免费PDF全文
m‐Isopropenyl‐α, α‐dimethylbenzyl isocyanate (m‐TMI) was grafted on isotactic polypropylene (PP) using di‐cumyl peroxide as a reaction initiator under varying reaction conditions to yield m‐TMI‐g‐PP coupling agent with four sets of grafting yield and molecular weight. Grafting yield of the synthesized m‐TMI‐g‐PP were 1.80%, 2.01%, 9.05%, and 8.86% and molecular weight of the corresponding grafted polymer were 129,225; [Correction made here after initial online publication.] 187,240; 124,130; and 180,838, respectively. Rubberwood flour reinforced polypropylene composites were prepared using these coupling agents and tested for mechanical properties. m‐TMI‐g‐PP coupling agent with 9.09% grafting and 124230 Mw was found to give the highest tensile and flexural strengths. Flexural modulus of the coupled composites was higher than uncoupled composites. Interfacial region of the composites characterized by scanning electron microscope (SEM) suggest effective wetting of fiber by PP in the case of coupled composites. The effect of fiber loading on composites indicates continuous increment in tensile and flexural strengths in coupled composites. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44196. 相似文献
20.
Nanocomposites of poly(lactide) (PLA) and the PLA plasticized with diglycerine tetraacetate (PL‐710) and ethylene glycol oligomer containing organo‐modified montmorillonites (ODA‐M and PGS‐M) by the protonated ammonium cations of octadecylamine and poly(ethylene glycol) stearylamine were prepared by melt intercalation method. In the X‐ray diffraction analysis, the PLA/ODA‐M and plasticized PLA/ODA‐M composites showed a clear enlargement of the difference of interlayer spacing between the composite and clay itself, indicating the formation of intercalated nanocomposite. However, a little enlargement of the interlayer spacing was observed for the PLA/PGS‐M and plasticized PLA/PGS‐M composites. From morphological studies using transmission electron microscopy, a finer dispersion of clay was observed for PLA/ODA‐M composite than PLA/PGS‐M composite and all the composites using the plasticized PLA. The PLA and PLA/PL‐710 composites containing ODA‐M showed a higher tensile strength and modulus than the corresponding composites with PGS‐M. The PLA/PL‐710 (10 wt %) composite containing ODA‐M showed considerably higher elongation at break than the pristine plasticized PLA, and had a comparable tensile modulus to pure PLA. The glass transition temperature (Tg) of the composites decreased with increasing plasticizer. The addition of the clays did not cause a significant increase of Tg. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006 相似文献