首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Free‐radical solution copolymerization of acrylamide (AAm) and of a disubstituted acrylamide derivative, N‐acryloylmorpholine (NAM), with N‐acryloxysuccinimide (NAS) was investigated with the aim to obtain a copolymer of at least 100,000 g mol?1. Different polymerization conditions likely to increase the molecular weight were studied such as monomer and initiator concentrations, temperature, and nature of the solvent. The molecular weights were determined by SEC using a light‐scattering detector. The grafting of end‐functionalized polysaccharide chains onto such high molecular weight poly(NAM‐co‐NAS) was performed and a graft copolymer bearing a high number of saccharidic branches was obtained. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1808–1816, 2003  相似文献   

2.
In this work, a novel poly(acrylic acid‐coN‐acryloylmorpholine)/attapulgite superabsorbent composite was prepared by graft copolymerization among acrylic acid, N‐acryloylmorpholine and attapulgite in aqueous solution, using N,N′‐methylenebisacrylamide as a crosslinker and ammonium persulfate as an initiator. The result from FTIR spectra showed that  OH of attapulgite participated in graft copolymerization with acrylic acid and N‐acryloylmorpholine. Proper monomer ratio and atapulgite content could form a loose surface, and improve reswelling ability and initial swelling rate. The buffer action of the  COOH and  COO groups in the superabsorbent composite keeps the water absorbency a rough constant in the pH range of 4.4–9.6. Both polarity and structure of an organic solvent are responsible for the phase transition point of the superabsorbent composite. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

3.
The antimicrobial polymer/polymer macrocomplexes were synthesized by radical alternating copolymerization of N‐vinyl‐2‐pyrrolidone with maleic anhydride [poly(VP‐alt‐MA)] with 2,2′‐azobis‐isobutyronitrile as an initiator at 65°C in dioxane solutions under nitrogen atmosphere, and interaction of prepared copolymer with poly(ethylene imine) (PEI) in aqueous solutions. The susceptibility of some Gram‐negative (Salmonella enteritidis and Escherichia coli) and Gram‐positive (Staphylococcus aureus and Listeria monocytogenes) bacteria to the alternating copolymer and its PEI macrocomplexes with different compositions in microbiological medium was studied using pour‐plate technique. All the studied polymers, containing biologically active moieties in the form of ionized cyclic amide, and macrobranched aliphatic amine groups and acid/amine complexed fragments, were more effective against L. monocytogenes than those for Gram‐positive S. aureus bacterium. This fact was explained by different surface layer structural architectures of biomacromolecules of tested bacteria. The resulting polymeric antimicrobial materials are expected to be used in various areas of medicine and food industry. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:5841–5847, 2006  相似文献   

4.
Three types of N[4‐(N‐substituted amino carbonyl)phenyl] maleimide (RPhMI:N‐substituent (R) = phenyl, cyclohexyl, p‐chlorophenyl) were grafted onto poly(vinyl chloride) (PVC) films by using gamma irradiation. The effects of different parameters on the graft yield were investigated. These parameters included radiation dose and monomer concentration. Thermal properties of the grafted polymer were investigated by the determination of dehydrochlorination rate, thermal gravimetric behavior, and UV stability.  相似文献   

5.
Poly[aniline‐coN‐(2‐hydroxyethyl) aniline] was synthesized in an aqueous hydrochloric acid medium with a determined feed ratio by chemical oxidative polymerization. This polymer was used as a functional conducting polymer intermediate because of its side‐group reactivity. To synthesize the alkyl‐substituted copolymer, the initial copolymer was reacted with NaH to obtain the N‐ and O‐anionic copolymer after the reaction with octadecyl bromide to prepare the octadecyl‐substituted polymer. The microstructure of the obtained polymers was characterized by Fourier transform infrared spectroscopy, 1H‐NMR, and X‐ray diffraction. The thermal behavior of the polymers was investigated by thermogravimetric analysis and differential scanning calorimetry. The morphology of obtained copolymers was studied by scanning electron microscopy. The cyclic voltammetry investigation showed the electroactivity of poly [aniline‐coN‐(2‐hydroxyethyl) aniline] and N and O‐alkylated poly[aniline‐coN‐(2‐hydroxyethyl) aniline]. The conductivities of the polymers were 5 × 10?5 S/cm for poly[aniline‐coN‐(2‐hydroxyethyl) aniline] and 5 ×10?7 S/cm for the octadecyl‐substituted copolymer. The conductivity measurements were performed with a four‐point probe method. The solubility of the initial copolymer in common organic solvents such as N‐methyl‐2‐pyrrolidone and dimethylformamide was greater than polyaniline. The alkylated copolymer was mainly soluble in nonpolar solvents such as n‐hexane and cyclohexane. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

6.
Amino containing polymer of poly[styrene‐co‐N‐(4‐vinylbenzyl)‐N,N‐diethylamine] (PS‐co‐PVEA) was successfully grafted onto the surface of silica microspheres via the seed dispersion polymerization of styrene and N‐(4‐vinylbenzyl)‐N,N‐diethylamine in the presence of divinylbenzene employing the 3‐(methacryloxy)propyltrimethoxysilane activated silica microspheres as the seed. The polymerization led to thin chelating polymer films (30 nm) coated silica microspheres (silica@polymer) as determined by transmission electron microscopy. The synthesized silica@polymer composites were used as sorbents for lead ions (Pb2+). The adsorption properties, such as the pH effect, the adsorption kinetic, adsorption isotherm as well as the reuse of the silica@polymer sorbent were evaluated. The results demonstrated that the optimized adsorption condition was under neutral and the silica@polymer sorbent was efficient since it showed higher adsorption amounts (8.0 mg/g) and shorter adsorption equilibrium time (8 h) than that of the PS‐co‐PVEA microspheres and the pristine silica microspheres. Moreover, the silica@polymer sorbent was reusable even after four cycles of adsorption. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2014 , 131, 39973.  相似文献   

7.
Narrowdisperse poly(divinylbenzene‐coN‐isopropylacrylamide) (poly(DVB‐co‐NIPAM)) functional microspheres with the diameter in the range of 630 nm and 2.58 μm were prepared by distillation–precipitation polymerization in neat acetonitrile in the absence of any stabilizer. The effect of N‐isopropylacrylamide (NIPAM) ratio in the comonomer feed on the morphology of the resultant polymer particles was investigated in detail with divinylbenzene (DVB) as crosslinker and 2,2′‐azobisisobutyronitrile (AIBN) as initiator. The monodisperse poly(DVB‐co‐NIPAM) microspheres with NIPAM fraction of 20 wt % were selected for the preparation of raspberry‐like core‐corona polymer composite by the hydrogen‐bonding self‐assembly heterocoagulation with poly(ethyleneglycol dimethacrylate‐co‐acrylic acid) [poly(EGDMA‐co‐AA)] nanospheres. Both of the functional poly(DVB‐co‐NIPAM) microspheres and the core‐corona particles were characterized with scanning electron microscopy (SEM), Fourier transform infrared spectra (FTIR), and elemental analysis (EA). © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1350–1357, 2007  相似文献   

8.
The thermal decomposition behavior and degradation kinetics of poly(N‐adamantyl‐exo‐nadimide) were investigated with thermogravimetric analysis under dynamic conditions at five different heating rates: 10, 15, 20, 25, and 30°C/min. The derivative thermogravimetry curves of poly(N‐adamantyl‐exo‐nadimide) showed that its thermal degradation process had one weight‐loss step. The apparent activation energy of poly(N‐adamantyl‐exo‐nadimide) was estimated to be about 214.4 kJ/mol with the Ozawa–Flynn–Wall method. The most likely decomposition process was an F1 deceleration type in terms of the Coats–Redfern and Phadnis–Deshpande results. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3003–3009, 2007  相似文献   

9.
A nanoporous polymer with a chiral pendant chain of N‐acrylamido‐l ‐tryptophan was synthesized through a reversible addition–fragmentation chain transfer polymerization process using a dithiobenzoate derivative as chain transfer agent. The polymerization exhibited the usual characteristics of living processes, though slow polymerization rate and low percentage conversion for a chain extension experiment were observed. Depending on the monomer/chain transfer agent ratio, poly(N‐acrylamido‐l ‐tryptophan) with number‐average molecular weights between 640 and 4340 g mol?1 and molar mass dispersities between 1.10 and 1.24 was obtained, as evidenced from gel permeation chromatography. Scanning electron microscopy images indicated that the polymer was porous. Nitrogen adsorption analysis of the polymer evidenced the presence of mesopores (2–19 nm) associated with micropores (0.45–2 nm) according to the Barrett–Joyner–Halenda method with a specific Brunauer–Emmett–Teller surface area of 22.98 m2 g?1. © 2013 Society of Chemical Industry  相似文献   

10.
The synthetic route for the preparation of α,ω‐isocyanate‐telechelic poly(methyl methacrylate‐co‐acryloxysuccinimide) and α,ω‐ isocyanate‐telechelic poly(methyl methacrylate‐co‐acrylamidohexanoic succinimide) soft segments is presented. The strategy includes reversible addition fragmentation chain transfer (RAFT) copolymerization and two post polymerization modification steps. The RAFT polymerizations result in copolymers with an activated ester proportion within the polymer chains of 8% N‐acryloxysuccinimide and 5% 6‐acrylamidohexanoic succinimide. The reactivity ratios of the monomer pairs were determined. In a first post polymerization reaction carboxylic acid homo telechelic polymers were prepared by reacting the ω‐dithiobenzoate end‐group with an excess of azobis(cyanovaleric acid). In a second modification step the α‐ and ω‐carboxylic acid end‐groups were reacted with hexamethylene diisocyanate and 100% isocyanate telechelic copolymers were obtained. Finally segmented polyurethanes were prepared by coupling hexamethylene diisocyanate (HDI) end capped soft segments with hard segments composed of 1,4‐butanediol and HDI. © 2013 Society of Chemical Industry  相似文献   

11.
Polychelates were synthesized by the addition of aqueous solutions of copper(II), cadmium(II), and nickel(II) chlorides to aqueous solutions of poly(maleic anhydride‐alt‐acrylic acid) [poly(MA‐alt‐AA)] in different pH media. The thermal properties of poly(MA‐alt‐AA) and its metal complexes were investigated with thermogravimetry and differential scanning calorimetry (DSC) measurements. The polychelates showed higher thermal stability than poly(MA‐alt‐AA). The thermogravimetry of the polymer–metal complexes revealed variations of the thermal stability by complexation with metal ions. The relative thermal stabilities of the systems under investigation were as follows: poly(MA‐alt‐AA)–Cd(II) > poly(MA‐alt‐AA)–Cu(II) > poly(MA‐alt‐AA)–Ni(II) > poly(MA‐alt‐AA). The effects of pH on the complexation and gravimetric analysis of the polychelates were also studied. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 3926–3930, 2006  相似文献   

12.
A prepolymerization process was used to prepare functionalized poly(N‐isopropylacrylamide) latexes with surface cyano groups. The functionalized latexes prepared were characterized by FTIR, 1H NMR, scanning electron microscopy and quasi‐elastic light scattering. In addition, the polymerization conversion and the water‐soluble polymer amounts were quantified. The polymerization conversions were found to be above 80% with 5–14 wt% of water soluble polymer formation. The immobilization of antibody (immunoglobulin) onto such cyano‐containing thermally sensitive particles, suggests the feasibility of specific dipole–dipole interactions between the cyano and hydroxyl functional groups from particle and antibody, respectively. Copyright © 2004 Society of Chemical Industry  相似文献   

13.
A new class of soluble conductive poly(N‐vinylcarbazole) (PVCz) compounds has been developed by oxidative matrix polymerization of N‐vinylcarbazole (NVCz) by Ce(IV) in the presence of poly(ethylene glycol) (PEG). PEG was found to be a more suitable matrix with which to obtain a stable homogenous ternary complex solution when compared with poly(acrylic acid) (PAA) and poly(vinylpyrrolidone) (PVP). The role of PEG, NVCz and Ce(IV) concentration, order of component addition, the structure of the polymer matrix, molecular weight of polymer and the effect of solvent have been investigated. Obtaining soluble PEG–Ce(III)–PVCz ternary complexes was shown by cyclic voltammetric measurements, and the initial rate of formation NVCz cation radicals as calculated using UV–visible spectrophotometry. Advantageously with these soluble complexes, conductivities could be measured both in solution and in the solid state. © 2001 Society of Chemical Industry  相似文献   

14.
The radical‐initiated terpolymerization of 3,4‐dihydro‐2H‐pyran (DHP), maleic anhydride (MA), and vinyl acetate (VA), which were used as a donor–acceptor–donor system, was carried out in methyl ethyl ketone in the presence of 2,2′‐azobisisobutyronitrile as an initiator at 65°C in a nitrogen atmosphere. The synthesis and characterization of binary and ternary copolymers, some kinetic parameters of terpolymerization, the terpolymer‐composition/thermal‐behavior relationship, and the antitumor activity of the synthesized polymers were examined. The polymerization of the DHP–MA–VA monomer system predominantly proceeded by the alternating terpolymerization mechanism. The in vitro cytotoxicities of poly(3,4‐dihydro‐2H‐pyran‐alt‐maleic anhydride) [poly(DHP‐alt‐MA)] and poly(3,4‐dihydro‐2H‐pyran‐co‐maleic anhydride‐co‐vinyl acetate) [poly(DHP‐co‐MA‐co‐VA)] were evaluated with Raji cells (human Burkitt lymphoma cell line). The antitumor activity of the prepared anion‐active poly(DHP‐alt‐MA) and poly(DHP‐co‐MA‐co‐VA) polymers were studied with methyl–thiazol–tetrazolium testing, and the 50% cytotoxic dose was calculated. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2352–2359, 2005  相似文献   

15.
Zero–zero‐birefringence polymers which exhibit no orientational birefringence and no photoelastic birefringence may be suitable candidates for the components of optical devices. To develop zero–zero‐birefringence polymers, a novel copolymerization system is required. We investigated two types of birefringence of poly(N‐methylmaleimide) (PMeMI) and showed that PMeMI exhibits positive orientational and photoelastic birefringence. On the basis of the results, we calculated the optimal composition for compensating both types of birefringence by solving three equations which describe the relationship between birefringence properties and weight fraction of monomers. When the copolymer compositions were MMA/BzMA/MeMI = 86/8/6 and 88/8/4 (wt %), zero–zero‐birefringence polymers were obtained. By using MeMI as a comonomer, these zero–zero‐birefringence polymers have a much higher glass transition temperature (Tg) than those of previous researches. Also, this polymer film has high transparency comparable with that of PMMA film. Therefore, we conclude that we successfully prepared zero–zero‐birefringence polymers using N‐substituted maleimide and that N‐substituted maleimide is a promising material for zero–zero‐birefringence polymers for optical devices. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40423.  相似文献   

16.
Polythiophene (PT) based dual responsive water‐soluble graft copolymer (PT‐g‐[poly(methoxyethoxy ethyl methacrylate)‐co‐poly(N,N‐diethylamino ethyl methacrylate)]) (PT‐g‐P(MeO2MA‐co‐DEAEMA)) (PTDE) has been synthesized by random copolymerization of methoxyethoxy ethyl methacrylate (MeO2MA) and N,N‐diethylamino ethyl methacrylate (DEAEMA) at 30 °C on the 2,5‐poly(3‐[1‐ethyl‐2‐(2‐ bromoisobutyrate)] thiophene) (PTI) macroinitiator using the Cu based atom transfer radical polymerization technique. The PTDE graft copolymer was characterized by gel permeation chromatography and 1H NMR techniques and it exhibits thermo‐reversible solubility in water showing a lower critical solution temperature of ca 42 °C in neutral aqueous solution. The PTDE graft copolymer contains a fluorescent PT backbone, and interestingly the system exhibits doubling of fluorescence intensity with rising temperature over the temperature range 41–45 °C at pH 7. The PTDE system therefore acts following the principle of the polymeric AND logic gate and it is also found to be effective in sensing of nitroaromatics, particularly picric acid. The influence of chain hydrophobicity on the logic operation and on the sensing of nitroaromatics is discussed. © 2014 Society of Chemical Industry  相似文献   

17.
Hydrogels are hydrophilic polymers that swell to an equilibrium volume in the presence of water, preserving their shape. The dynamic swelling behavior of poly(N‐isopropylacrylamide‐coN,N‐dimethylacrylamide) [poly(NIPA‐co‐DMA)] copolymers at 37°C was investigated. It was observed that the swelling degree in the copolymers decreases with the N‐isopropylacrylamide content. In addition, the liberation mechanism was found to be Fickian. Diffusion coefficients according to Fick′s law as a function of the N‐isopropylacrylamide concentration and results of the release process are reported. The kinetics of cephazoline sodium release from poly(NIPA‐co‐DMA) hydrogels with different compositions was studied. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3433–3437, 2004  相似文献   

18.
Poly(N,N‐dimethylaminoethyl methacrylate) [poly(DMAEMA)] was grafted onto a commercial polyethylene film by means of γ‐irradiation, and the grafted films were reacted with various liquid‐crystal‐forming benzoic acids. When polymeric salts consisting only of poly(DMAEMA) and the benzoic acids were heated, dissociation of salts was observed, but with poly(DMAEMA) grafted onto polyethylene films, salt dissociation or crystallization of dissociated acids could be avoided, and interesting morphologies, including liquid‐crystal phases, were observed for the systems of benzoic acids–poly(DMAEMA‐g‐polyethylene). © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 972–978, 2000  相似文献   

19.
Highly branched poly(N‐isopropylacrylamide) (PNIPAM) has been synthesized by a reversible addition‐fragmentation chain transfer (RAFT) copolymerization of NIPAM and a vinyl contained trithiocarbonate RAFT agent. 1H‐NMR measurements revealed that the degrees of branch (DB) are in the range of 0.032–0.105. Laser light scattering (LLS) measurements gave the hydrodynamic radii (Rh) of the polymers to be 3.6–5.7 nm with molecular weight in the range of 1.3 × 104 g/mol–2.3 × 10?4 g/mol. Highly branched PNIPAM with terminal thiol groups were obtained by aminolysis the polymers, and the product can be oxidized by air to form disulfide bonds (? S? S? ) among chains and resulting in the formation of nanoparticle in aqueous solution. Interestingly, the nanoparticle in size of Rh ? 80 nm showed a thermogelling behavior to form bulk hydrogel when the temperature was increased up to 25°C due to the thermo‐induced association of the PNIPAM chains among the nanoparticles. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

20.
Poly(N‐isopropylacrylamide‐co‐maleic acid)‐zinc oxide [P(NIPA/MA)/ZnO] composite hydrogels, containing a definite amount of ZnO, were prepared from N‐isopropylacrylamide (NIPA) and maleic acid (MA) monomers with 0–31.15 mol % MA in aqueous saturated zinc oxide solutions by radiation‐induced polymerization and gelation using γ rays from a 60Co source. The amounts of released ZnO from these composite hydrogels were determined by differential pulse polarography (DPP) using the characteristic peaks obtained at about –1,000, ?1,050, and –1,300 mV at pH 2.0, 5.5, and 7.05, respectively. It was found that the ZnO‐release behavior of P(NIPA/MA)/ZnO composite hydrogels depended strongly on the MA content and pH of the medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号