首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, the morphology and the mechanical properties of thermoplastic starch (TPS)/linear low‐density polyethylene (LLDPE) blends prepared by one‐step and two‐step extrusion processing conditions were contrasted. In the presence of citric acid (CA), the compatibility of TPS/PE blends were proved to transfer to a high continuous dispersion in one‐step extrusion process by scanning electron microscopy analysis. By increasing the interaction between two phases, the mechanical properties of the blends were markedly improved, even reached the levels of the conventional plastics. The rheological study proved that the viscosity (η) of TPS and TPS/PE blends were both decreasing with increase in the content of CA at the same temperature, which ascribed to the acidity of CA was propitious to fragmentation and dissolution of cornstarch granules, deteriorated the chain entanglement in starch, and weakened the interaction of starch molecules. Both FTIR spectroscopy and thermal properties analysis of TPSs and TPS/PE blends showed that the interactions between starch and plasticizer became stronger in the presence of CA. POLYM. COMPOS. 28:89–97, 2007. © 2007 Society of Plastics Engineers  相似文献   

2.
In the presence of dicumyl peroxide (DCP), the thermal plasticization of starch and its compatibilizing modification with polyethylene was accomplished by one‐step reactive extrusion in a single‐screw extruder at the same time. Because of the formation of polyethylene‐graft‐maleic anhydride (PE‐g‐MAH) during the extrusion, it was used as the compatibilizer between the thermoplastic starch and polyethylene. The blending samples were characterized by means of thermogravimetric analysis (TGA), scanning electron microscopy (SEM), dynamic thermal mechanical analysis (DTMA) and Fourier‐transform infrared (FTIR) analysis. The experimental results showed that in the presence of DCP the addition of MAH improved the mutual dispersion of molecules in thermoplastic starch and polyethylene. From TGA, we concluded that the thermal stability of the blends with MAH was improved compared with the blends without MAH. The DTMA and FTIR results indicated that, with the addition of MAH, the compatibility of molecules between thermoplastic starch and polyethylene in the blends was improved. Copyright © 2004 Society of Chemical Industry  相似文献   

3.
Polycaprolactone (PCL) has been blended with thermoplastic starch (TPS), prepared from regular corn starch and glycerol, in a twin‐screw extruder. The rheological, mechanical, thermal and morphological properties of the blends were examined. Differential Scanning Calorimetry (DSC) and Scanning Electron Microscopy (SEM) studies revealed that PCL/TPS blends are thermodynamically immiscible. However, they form compatible blends as a result of the hydrogen bonding interaction between the ester carbonyl of PCL and the ? OH groups on starch. Biodegradability of the blends increased with increasing TPS content. Dynamic viscoelastic measurements concluded that blends containing above 60‐wt% TPS had higher storage and loss moduli than those of pure TPS and PCL. In addition, these blends had higher complex viscosities. Polym. Eng. Sci. 44:1429–1438, 2004. © 2004 Society of Plastics Engineers.  相似文献   

4.
In this paper, the implications of melt compatibility on thermal and solid‐state properties of linear low density polyethylene/high density polyethylene (LLDPE/HDPE) blends were assessed with respect to the effect of composition distribution (CD) and branch content (BC). The effect of CD was studied by melt blending a metallocene (m‐LLDPE) and a Ziegler‐Natta (ZN) LLDPE with the same HDPE at 190 °C. Similarly, the effect of BC was examined. In both cases, resins were paired to study one molecular variable at a time. Thermal and solid‐state properties were measured in a differential scanning calorimeter and in an Instron mechanical testing instrument, respectively. The low‐BC m‐LLDPE (BC = 14.5 CH3/1000 C) blends with HDPE were compatible at all compositions: rheological, thermal and some mechanical properties followed additivity rules. For incompatible high‐BC (42.0 CH3/1000 C) m‐LLDPE‐rich blends, elongation at break and work of rupture showed synergistic effects, while modulus was lower than predictions of linear additivity. The CD of LLDPE showed no significant effect on thermal properties, elongation at break or work of rupture; however, it resulted in low moduli for ZN‐LLDPE blends with HDPE. For miscible blends, no effect for BC or CD of LLDPE was observed. The BC of LLDPE has, in general, a stronger influence on melt and solid‐state properties of blends than the CD. Copyright © 2004 Society of Chemical Industry  相似文献   

5.
Novatein thermoplastics from bloodmeal (NTP) were blended with linear low‐density polyethylene (LLDPE) using maleic anhydride grafted polyethylene (PE‐g‐MAH) as compatibilizer. The compatibilizing effect on mechanical, morphology, thermal properties, and water absorption were studied and compared with blends without compatibilizer. The amount of polyethylene added was varied between 20 and 70% in NTP with addition of 10% compatibilizer. An improvement in compatibility between NTP and LLDPE was observed across the entire composition range and the difference were more pronounced at higher NTP contents where the tensile strength of blends was maintained and never dropped below that of pure NTP. Theoretical models were compared to the results to describe mechanical properties. A finely dispersed small particles of NTP in compatibilized blends were observed using SEM. Improved compatibility has restricted chain movement resulting in slightly elevated Tg revealed by DMA. On the other hand, water absorption of the hydrophilic NTP has been decreased when blending with hydrophobic LLDPE. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1890–1897, 2013  相似文献   

6.
改性淀粉/LLDPE共混体系生物降解材料性能的研究   总被引:1,自引:0,他引:1  
将自制接枝改性淀粉与LLDPE、玉米淀粉以及另外两种相容剂进行共混。通过对共混体系的形态结构、力学性能、流变性能、热性能以及对共混物薄膜的生物降解性能等的研究说明:复合相容剂MAH-g-PE+LA-g-starch的加入改善了淀粉和LLDPE的相容性,使得共混物体系具有适宜的拉伸强度及断裂伸长率;LLDPE/淀粉/(MAH-g-PE+LA-g-starch)共混物薄膜具有很好的生物降解性能。  相似文献   

7.
In this work, blends of poly(butylene terephthalate) (PBT) and linear low‐density polyethylene (LLDPE) were prepared. LLDPE was used as an impact modifier. Since the system was found to be incompatible, compatibilization was sought for by the addition of the following two types of functionalized polyethylene: ethylene vinylacetate copolymer (EVA) and maleic anhydride‐grafted EVA copolymer (EVA‐g‐MAH). The effects of the compatibilizers on the rheological and mechanical properties of the blends have been also quantitatively investigated. The impact strength of the PBT–LLDPE binary blends slightly increased at a lower concentration of LLDPE but increased remarkably above a concentration of 60 wt % of LLDPE. The morphology of the blends showed that the LLDPE particles had dispersed in the PBT matrix below 40 wt % of LLDPE, while, at 60 wt % of LLDPE, a co‐continuous morphology was obtained, which could explain the increase of the impact strength of the blend. Generally, the mechanical strength was decreased by adding LLDPE to PBT. Addition of EVA or EVA‐g‐MAH as a compatibilizer to PBT–LLDPE (70/30) blend considerably improved the impact strength of the blend without significantly sacrificing the tensile and the flexural strength. More improvement in those mechanical properties was observed in the case of the EVA‐g‐MAH system than for the EVA system. A larger viscosity increase was also observed in the case of the EVA‐g‐MAH than EVA. This may be due to interaction of the EVA‐g‐MAH with PBT. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 989–997, 1999  相似文献   

8.
Thermoplasticized starch (TPS) filled poly(lactic acid) (PLA) blends are usually found to have low mechanical properties due to poor properties of TPS and inadequate adhesion between the TPS and PLA. The purpose of this study was to investigate the reinforcing effect of wood fibers (WF) on the mechanical properties of TPS/PLA blends. In order to improve the compatibility of wood with TPS/PLA blends, maleic anhydride grafted PLA (MA‐g‐PLA) copolymer was synthesized and used. TPS, TPS/PLA blends, and WF reinforced TPS/PLA composites were prepared by twin‐screw extrusion and injection molded. Scanning electron microscope and crystallinity studies indicated thermoplasticity in starch. WF at two different weight proportions, that is, 20% and 40% with respect to TPS content were taken and MA‐g‐PLA at 10% to the total weight was chosen to study the effect on mechanical properties. At 20% WF and 10% MA‐g‐PLA, the tensile strength exhibited 86% improvement and flexural strength exhibited about 106% improvement over TPS/PLA blends. Increasing WF content to 40% further enhanced tensile strength by 128% and flexural strength by 180% with respect to TPS/PLA blends. Thermal behavior of blends and composites was analyzed using dynamic mechanical analysis and thermogravimetric analysis. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46118.  相似文献   

9.
Ethylene–vinyl alcohol copolymer (EVOH) and linear low‐density polyethylene (LLDPE) blends with 5% LLDPE grafted with 1% maleic anhydride (MAH; EVOH/LLDPE/LLDPE‐g‐MAH), created to increase the interfacial compatibility, were coextruded with pure LLDPE through the microlayer coextrusion technology. The phase morphology and gas‐barrier properties of the alternating‐layered (EVOH/LLDPE/LLDPE‐g‐MAH)/LLDPE composites were studied by scanning electron microscopy observation and oxygen permeation coefficient measurement. The experimental results show that the EVOH/LLDPE/LLDPE‐g‐MAH and LLDPE layers were parallel to each other, and the continuity of each layer was clearly evident. This structure greatly decreased the oxygen permeability coefficient compared to the pure LLDPE and the barrier percolation threshold because of the existence of the LLDPE/EVOH/LLDPE‐g‐MAH blend layers, and the LLDPE layers diluted the concentration of EVOH in the whole composites. In addition, the effects of the layer thickness ratio of the EVOH/LLDPE/LLDPE‐g‐MAH and LLDPE layers and the layer number on the barrier properties of the layered composites were investigated. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42211.  相似文献   

10.
马来酸酐对热塑性淀粉/聚乙烯相容性的影响   总被引:2,自引:1,他引:2  
王书军  于九皋 《中国塑料》2003,17(10):27-31
研究了在引发剂作用下,马来酸酐作为热塑性淀粉(TPS)/聚乙烯共混体系的增容剂,采用淀粉的热塑化与提高聚乙烯的相容性在单螺杆挤出机里同时完成的工艺。实验结果表明,在引发剂作用下,马来酸酐的加入提高了共混物中淀粉颗粒在聚乙烯中的分散性及共混体系的力学性能以及热稳定性,流变性能分析表明共混体系具有可加工性能。  相似文献   

11.
The utilization of cassava starch as one of the components in high density polyethylene (HDPE)/natural rubber (NR) blends were investigated. The true challenge in producing new materials based on natural resources is to design materials that could level the mechanical properties of existing conventional polymers. In this study, we have focused on characterizing the HDPE/NR blends incorporated with cassava starch in the form of granulates (native and silanized) as well as plasticized starch. Cassava starch acted as a biodegradation component in the HDPE/NR blends and the incorporation of cassava starch reduced thermal stability and the degree of crystallinity in general. Several series of cassava starch modifications were performed in order to improve the final properties of the blends. Cassava starch was treated with a silane coupling agent, and proved to be effective in improving tensile strength. The better dimensional stability and compatibility between the blend phases were obtained in the silane-treated cassava starch, as observed in the dynamic mechanical analysis results. Cassava starch was also converted into a plasticized form (TPS), and from the results, the degree of TPS adhesion at the inter-phase ofthe HDPE/NR-TPS blend was clearly improved, as indicated in the morphology study. Through the comparison of thermal degradation results, the HDPE/NR/TPS blends proved to be superior to the HDPE/NR/particulate starch counterparts.  相似文献   

12.
The blending of thermoplastic starch (TPS) with other biodegradable polyesters such as polyesteramide could be an interesting way to produce new biodegradable starch‐based materials. Different mixes of wheat starch and polyesteramide (BAK) were melt blended by extrusion. After pelletization, granules were injection molded to produce test specimens. A range of blends was studied with glycerol (plasticizer)/starch content ratios varying from 0.14 to 0.54. BAK concentrations were up to 40 wt %, TPS remaining as the major phase in the blend. Various properties were examined with mechanical, thermomechanical (dynamic mechanical thermal analyzer) and thermal (differential scanning calorimetry) analysis. Hydrophobicity was determined with contact angle measurements. Thanks to the knowledge of the properties of each polymeric system, we analyzed the blends' behavior by varying each component concentration. The material aging was also studied. We showed that structural changes occurred during several weeks after injection. We noticed a certain compatibility between both polymeric systems. The addition of BAK to TPS matrix allowed us to overcome the weaknesses of pure thermoplastic starch: low mechanical properties, high moisture sensitivity, and high shrinkage in injection, even at 10 wt % BAK. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1117–1128, 2000  相似文献   

13.
Novel degradable materials based on ternary blends of natural rubber (NR)/linear low-density polyethylene (LLDPE)/thermoplastic starch (TPS) were prepared via simple blending technique using three different types of natural rubber (i.e., unmodified natural rubber (RSS#3) and ENR with 25 and 50 mol% epoxide). The evolution of co-continuous phase morphology was first clarified for 50/50: NR/LLDPE blend. Then, 10 wt% of TPS was added to form 50/40/10: NR/LLDPE/TPS ternary blend, where TPS was the particulate dispersed phase in the NR/LLDPE matrix. The smallest TPS particles were observed in the ENR-50/LLDPE blend. This might be attributed to the chemical interactions of polar functional groups in ENR and TPS that enhanced their interfacial adhesion. We found that ternary blend of ENR-50/LLDPE/TPS exhibited higher 100 % modulus, tensile strength, hardness, storage modulus, complex viscosity and thermal properties compared with those of ENR-25/LLDPE/TPS and RSS#3/LLDPE/TPS ternary blends. Furthermore, lower melting temperature (T m) and heat of crystallization of LLDPE (?H) were observed in ternary blend of ENR-50/LLDPE/TPS compared to the other ternary blends. Also, neat TPS exhibited the fastest biodegradation by weight loss during burial in soil for 2 or 6 months, while the ternary blends of NR/LLDPE/TPS exhibited higher weight loss compared to the neat NR and LLDPE. The lower weight loss of the ternary blends with ENR was likely due to the stronger chemical interfacial interactions. This proved that the blend with ENR had lower biodegradability than the blend with unmodified NR.  相似文献   

14.
In this study, various poly(ethylene terephthalate) (PET) and linear low‐density polyethylene (LLDPE) with maleic anhydride‐grafted LLDPE (LLDPE‐g‐MAH) compatibilizer were melt blended under an elongational flow. A novel extrusion device, eccentric rotor extruder (ERE), was developed to supply such flow during the process. Including morphology, mechanical properties, melting behavior, and rheological behavior were studied. The morphological study showed that the compatibility between LLDPE and PET was greatly improved with LLDPE loading up to 80 wt %. Mechanical tests indicated that LLDPE could toughen PET to some extent. Moreover, a comparison of samples prepared between ERE and conventional extruder was made and demonstrated the sample prepared by ERE can exhibit better mechanical properties. Differential scanning calorimetry results revealed that PET can promote the crystallinity of LLDPE. Rheological behavior indicated that the complex viscosity of the blends exhibited strong shear thinning phenomenon with increasing LLDPE content, particularly in high‐frequency range blend with the LLDPE weight ratio of 80 wt % was more sensitivity to shear rate than neat LLDPE. The G′‐G″ curves of the blends also revealed that the microstructure of the blends changed significantly with the addition of LLDPE which was consistent with the scanning electron micrographs that PET particles became smaller and distributed more uniform with increasing LLDPE content. Furthermore, the blends showed similar stress relaxation mechanism with adding LLDPE content from 60 to 100 wt %. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46489.  相似文献   

15.
Five fungi including Aspergillus niger, Penicilium pinophilum, Chaetoomium globsum, Gliocladium virens and Aureobasium pullulans were used to investigate the biodegradation of starch‐based elastomers: polyethylene‐octene elastomer (POE)/starch and grafted POE‐g‐MAH/starch copolymer blends. The viability of the composite spore suspensions were measured before estimating the fungal growth on the surface of specimens. The weight loss, morphology and mechanical properties of the blended specimens were measured using scanning electron microscopy and a mechanical properties tester after 28 days of culturing. The spore suspension in the experiment showed good viability. Pure POE and POE‐g‐MAH did not allow significant fungal growth. Pure POE did not lose weight or have a change in tensile strength, but pure POE‐g‐MAH lost about 0.07% of its weight with a slight reduction in tensile strength during culture period. There was heavy growth on the surface of POE/starch and POE‐g‐MAH/starch blends after 28 days of culturing. The weight loss of POE/starch and POE‐g‐MAH/starch blends increased with increasing starch content. POE‐g‐MAH/starch blends tended to lose more weight than POE/starch blends. After biodegradation, the surface of POE/starch and POE‐g‐MAH/starch blends became rough with many holes and cracks, indicating that the films were eroded by the fungi. Tensile strength of POE/starch and POE‐g‐MAH/starch blends decreased after culturing because of microbial attack. On the contrary, elongation at break of POE‐g‐MAH/starch blends increased after biodegradation. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci 114:3574–3584, 2009  相似文献   

16.
Morphology and rheological properties of low‐density polyethylene/linear low‐density polyethylene/thermoplastic starch (LDPE/LLDPE/TPS) blends are experimentally investigated and theoretically analyzed using rheological models. Blending of LDPE/LLDPE (70/30 wt/wt) with 5–20 wt % of TPS and 3 wt % of PE‐grafted maleic anhydride (PE‐g‐MA) as a compatibilizer is performed in a twin‐screw extruder. Scanning electron micrographs show a fairly good dispersion of TPS in PE matrices in the presence of PE‐g‐MA. However, as the TPS content increases, the starch particle size increases. X‐ray diffraction patterns exhibit that with increase in TPS content, the intensity of the crystallization peaks slightly decreases and consequently crystal sizes of the blends decrease. The rheological analyses indicate that TPS can increase the elasticity and viscosity of the blends. With increasing the amount of TPS, starch particles interactions intensify and as a result the blend interface become weaker which are confirmed by relaxation time spectra and the prediction results of emulsion Palierne and Gramespacher‐Meissner models. It is demonstrated that there is a better agreement between experimental rheological data and Coran model than the emulsion models. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44719.  相似文献   

17.
Two commercial polymer materials, metallocene linear low density polyethylene (m‐LLDPE) and ethylene/vinyl acetate copolymer (EVA) have been used to form binary blends of various compositions. The mechanical properties, morphology, rheological behavior, dynamic mechanical properties, and crystallization of m‐LLDPE/EVA blends were investigated. It was found that with the addition of EVA, the fluidity and processability of m‐LLDPE were significantly improved, and the introduction of polar groups in this system showed no significant changes in mechanical properties at lower EVA content. As verified by morphology observation and differential scanning calorimetry analysis, miscible blends were formed within certain weight ratios. Dynamic mechanical property studies showed that flexibility of the blends was enhanced in comparion with pure m‐LLDPE, where the peak value of loss modulus shifted to lower temperature and its intensity was enhanced as EVA content increased, indicating the existence of more amorphous regions in the blends. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 905–910, 2004  相似文献   

18.
The first aim of this study was to prepare thermoplastic starch (TPS), namely blends of tapioca starch and hyperbranched polyester polyol and to evaluate the hyperbranched polyester polyol (HBP) as a plasticizing agent for tapioca starch. The second aim was to prepare blends of maleic‐anhydride‐grafted low‐density polyethylene (LDPE‐g‐MA) and TPS, and to evaluate the effect of the mass ratio LDPE‐g‐MA/TPS on the structural, thermal, rheological, morphological, and mechanical properties of the blends. The melting and crystallization temperatures of the LDPE‐g‐MA/TPS blends did not correlate well with the ratio of LDPE‐g‐MA/TPS. The blends exhibited a reduction in the A‐type crystallinity and a pseudoplastic rheological behavior. V‐type crystallinity was not observed for neither TPS nor LDPE‐g‐MA/TPS blends. Scanning electronic microscophy provided an evidence for the presence of starch granules in all the blends and for low interaction degree between LDPE‐g‐MA and TPS. Young's modulus and tensile strength of the LDPE‐g‐MA/TPS blends decreased with the decreasing LDPE‐g‐MA/TPS ratio. POLYM. ENG. SCI., 55:2526–2533, 2015. © 2015 Society of Plastics Engineers  相似文献   

19.
Linear low‐density polyethylene (LLDPE)/poly(vinyl alcohol) (PVA) blends were prepared by melt mixing. LLDPE/PVA weight ratios between 90/10 and 40/60 were studied. The effects of the silane coupling agent 3‐(trimethoxysilyl)propyl methacrylate on processability, gel fraction, component interaction, compatibility, thermal stability, tensile properties, and morphology of the LLDPE/PVA blends were investigated. The results indicated that the presence of silane increased the equilibrium torque of the LLDPE/PVA blends because of crosslinking and better compatibility between LLDPE and PVA. The degree of crosslinking was quantified by gel fraction measurements, and crosslinking was confirmed by Fourier Transform Infrared Spectroscopy analysis. The melting temperature depression of PVA and LLDPE further suggested the formation of crosslinks. The thermal stability and tensile properties such as tensile strength, elongation at break, and Young's modulus of the blends also increased with the incorporation of silane. Improved compatibility between LLDPE and PVA in the blends with silane was demonstrated by the interconnected rough material observed in scanning electron microscopy images that differed from the morphology of the LLDPE/PVA blends without silane. J. VINYL ADDIT. TECHNOL., 2012. © 2012 Society of Plastics Engineers  相似文献   

20.
This article investigates the structure and properties of thermoplastic starch/PLA blends where the TPS phase is plasticized by sorbitol, glycerol, and glycerol/sorbitol mixtures. The blends were prepared using a twin‐screw extruder where starch gelatinization, water removal, and dispersion of TPS into a PLA matrix were carried out sequentially. The plasticizers were added to starch in the first stage of the extruder to allow complete starch gelatinization. The PLA was added at mid‐extruder and thoroughly mixed with the TPS. The plasticizer concentration was varied from 30 to 42% and the TPS content was varied from 27 to 60% on a weight basis. In all investigated blends, the PLA formed the continuous phase and the TPS was the dispersed phase. The viscosity, blend morphology, tensile mechanical properties as well as the thermal properties of the materials were measured. It was found that the glycerol/sorbitol ratio has an important effect on the blend properties. Finer blend morphologies, higher tensile strength and modulus but lower crystallization rate were found for the sorbitol plasticized blends. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号