首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The effects of three series of self‐synthesized poly(methyl methacrylate) (PMMA)‐based low‐profile additives (LPAs), including PMMA, poly(methyl methacrylate‐co‐butyl acrylate), and poly(methyl methacrylate‐co‐butyl acrylate‐co‐maleic anhydride) with different chemical structures and MWs on the volume shrinkage characteristics and internal pigmentability for low‐shrink unsaturated polyester (UP) resins during curing were investigated by an integrated approach of static phase characteristics of the ternary styrene (ST)/UP/LPA system, reaction kinetics, cured‐sample morphology, microvoid formation, and property measurements. The relative volume fraction of microvoids generated during the cure was controlled by the stiffness of the UP resin used, the compatibility of the uncured ST/UP/LPA systems, and the glass‐transition temperature of the LPAs used. On the basis of the Takayanagi mechanical model, the LPA mechanism on volume shrinkage control, which accounted for phase separation and microvoid formation, and factors leading to both a good volume shrinkage control and acceptable internal pigmentability for the molded parts are discussed. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3388–3397, 2004  相似文献   

2.
Three series of self‐synthesized poly(vinyl acetate)‐based low‐profile additives (LPAs), including poly(vinyl acetate), poly(vinyl chloride‐co‐vinyl acetate), and poly(vinyl chloride‐co‐vinyl acetate‐co‐maleic anhydride), with different chemical structures and molecular weights were studied. Their effects on the glass‐transition temperatures and mechanical properties for thermoset polymer blends made from styrene, unsaturated polyester, and LPAs were investigated by an integrated approach of the static phase characteristics, cured sample morphology, reaction kinetics, and property measurements. Based on Takayanagi mechanical models, the factors that control the glass‐transition temperature in each phase region of the cured samples and the mechanical properties are discussed. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3347–3357, 2003  相似文献   

3.
The effects of reactive poly(methyl methacrylate) (PMMA) and poly(vinyl acetate)‐block‐PMMA as low‐profile additives (LPAs) on the volume shrinkage characteristics and internal pigmentability for low‐shrink unsaturated polyester (UP) resins during curing at 110°C were investigated. These reactive LPAs, which contained peroxide linkages in their backbones, were synthesized by suspension polymerization with polymeric peroxides as initiators. Depending on the LPA composition and molecular weight, the reactive LPAs led to a considerable volume reduction or even to a volume expansion after the curing of styrene (ST)/UP/LPA ternary systems; this was attributed mainly to the expansion effects of the LPAs on the ST‐crosslinked polyester microgel structures caused by the reduction in the cyclization reaction of the UP resin during curing as well as to the repulsive forces between the chain segments of UP and LPAs within the microgel structures. The experimental results were explained by an integrated approach of measurements for the static phase characteristics of the ST/UP/LPA system, reaction kinetics, cured sample morphology, and microvoid formation with differential scanning calorimetry, scanning electron microscopy, optical microscopy, and image analysis. With the aid of the Takayanagi mechanical model, the factors leading to both a good volume shrinkage control and acceptable internal pigmentability for the molded parts were also explored. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 264–275, 2005  相似文献   

4.
The effects of reactive poly(methyl methacrylate) (PMMA) and poly(vinyl acetate)‐block‐poly(methyl methacrylate) (PVAc‐b‐PMMA) as low‐profile additives (LPAs) on the glass‐transition temperature and mechanical properties of low‐shrink unsaturated polyester resin (UP) were investigated by an integrated approach of determining static phase characteristics, reaction kinetics, cured sample morphology, and property measurements. The factors that, according to Takayanagi mechanical models, control the glass‐transition temperature in each phase region of the cured samples, as identified by both the thermally stimulated currents method and dynamic mechanical analysis, and the mechanical properties are discussed. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 867–878, 2006  相似文献   

5.
Blends of poly(ethylene terephthalate) and poly(ethylene‐2,6‐naphthalate) (70 : 30 w/w) were prepared via a melt‐mixing process at 280°C with various mixing times. The melt‐mixed blends were analyzed by magnetic resonance spectroscopy, differential scanning calorimetry, dynamic mechanical measurements, transmission electron microscopy, and tensile tests. The results indicate that the blends mixed for short times had lower extents of transesterification and were miscible to a limited extent. The blends initially show two glass transitions, which approached more closely and merged gradually with increasing mixing time. A mechanical model was used to help understand the glass‐transition behavior. With increasing mixing time, the phase structure of the blends improved, and this led to an increase in the tensile strength. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

6.
The effects of chemical structure and molecular weight of three series of thermoplastic polyurethane‐based (PU) low‐profile additives (LPA) on the miscibility of styrene (ST)/unsaturated polyester (UP) resin/LPA ternary systems prior to reaction were investigated by using the Flory‐Huggins theory and group contribution methods. The reaction kinetics during the cure at 110°C and the cured sample morphology were also studied by differential scanning calorimetry (DSC) and scanning electron microscopy (SEM), respectively. The phase‐separation characteristics of ST/UP/LPA systems during the cure, as revealed by the cured‐sample morphology, and the DSC reaction‐rate profile, could be generally predicted by the calculated upper critical solution temperature for the uncured ST/UP/LPA systems. Finally, based on the measurements for volume change and microvoid formation, volume shrinkage characteristics for the cured ST/UP/LPA systems have been explored. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 543–557, 2000  相似文献   

7.
The effects of three series of thermoplastic polyurethane‐based (PU) low‐profile additives (LPA) with different chemical structures and molecular weights on the glass transition temperatures and mechanical properties for thermoset polymer blends made from styrene (ST), unsaturated polyester (UP), and LPA have been investigated by an integrated approach of static phase characteristics‐cured sample morphology‐reaction conversion‐property measurements. The three series of PU used were made from 2,4‐tolylene di‐isocyanate (2,4‐TDI) and varied diols, namely polycaprolactone diol (PCL), poly(diethylene adipate) diol (PDEA), and poly(propylene glycol) diol (PPG), respectively, while the two UP resins employed were synthesized from maleic anhydride (MA) and 1,2‐propylene glycol (PG) with and without modification by phthalic anhydride (PA). Based on the Takayanagi mechanical models, factors that control the glass transition temperature in each phase region of cured samples, as identified by the method of thermally stimulated currents (TSC), and mechanical properties will be discussed. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 558–568, 2000  相似文献   

8.
Unsaturated polyester resins are the most widely used thermoset resins in the composite industry. In this study, three well‐defined unsaturated polyester resins were used. These resins have similar number‐average molecular weights, and they have different numbers of C?C bonds per molecule. The reaction kinetics of unsaturated polyester resins was studied using a differential scanning calorimeter (DSC) and a Fourier transform infrared (FTIR) spectrometer. The glass transition temperature of the isothermally cured resin was also measured. Trapped radicals were observed in the cured polyester resin from electron spin resonance (ESR) spectroscopy. Considering the diffusion‐limitation effect, a simple kinetic model was developed to simulate the reaction rate and conversion profiles of polyester vinylene and styrene vinyl groups, as well as the total reaction rate and conversion. Experimental results from DSC and FTIR measurements compare favorably with the model prediction. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 211–227, 2002; DOI 10.1002/app.10317  相似文献   

9.
Three series of self‐synthesized poly(vinyl acetate)‐based low‐profile additives (LPAs) with different chemical structures and molecular weights, including poly(vinyl acetate), poly(vinyl chloride‐co‐vinyl acetate), and poly(vinyl chloride‐co‐vinyl acetate‐co‐maleic anhydride), were studied. Their effects on the volume shrinkage characteristics and internal pigmentability for low‐shrink unsaturated polyester (UP) resins during cure were investigated. The experimental results were examined with an integrated approach involving measurements of the static phase characteristics of the ternary styrene/UP/LPA system, the reaction kinetics, the cured sample morphology, and microvoid formation by using differential scanning calorimetry, scanning electron microscopy, optical microscopy, and image analysis. Based on the Takayanagi mechanical model, factors leading to both good volume shrinkage control and acceptable internal pigmentability for the molded parts were explored. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3336–3346, 2003  相似文献   

10.
The final morphology of cured blends based on unsaturated polyester, styrene, and low‐molar‐weight saturated polyester as a low profile additive (LPA) was investigated with atomic force microscopy and scanning electron microscopy. The observed structure was compared to those obtained with widely used poly(vinyl acetate) (PVAc). On the surface and in the bulk, a network of particles, ranging in size from 50 to 60 nm, was observed with saturated polyester as an LPA. The influence of the molar weight and LPA content was investigated. To determine the mechanism of formation of such a morphology, in situ experiments were carried out to elucidate the phase‐separation mechanism. Small‐angle laser light scattering and small‐angle neutron scattering experiments were performed on ternary blends containing PVAc and saturated polyester, respectively. The first stage of spinodal decomposition was observed in both cases. Within our experimental conditions, gelation froze further evolution and led to a two‐phase cocontinuous structure that imposed the final morphology characteristics. In particular, the period and amplitude of the concentration fluctuations generated during the phase separation played essential roles. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 95: 1459–1472, 2005  相似文献   

11.
This study represents the behavior of flexural test of methyl methacrylate modified unsaturated polyester polymer concrete beam reinforced with glass‐fiber‐reinforced polymer (GFRP) sheets. The failure mode, load–deflection, ductility index, and separation load predictions according to the GFRP reinforcement thickness were tested and analyzed. The failure mode was found to occur at the bonded surface of the specimen with 10 layers of GFRP reinforcement. For the load–deflection curve, as the reinforcement thickness of the GFRP sheet increased, the crack load and ultimate load greatly increased, and the ductility index was found to be the highest for the beam with the thickness of the GFRP sheet at 10 layers (6 mm) or 13 layers (7.3 mm). The calculated results of separation load were found to match only the experimental results of the specimens where debonding occurred. The reinforcement effect was found to be most excellent in the polymer concrete with 10 layers of GFRP sheet reinforcement. The appropriate reinforcement ratio for the GFRP concrete beam suggested by this study was a fiber‐reinforced‐plastic cross‐sectional ratio of 0.007–0.008 for a polymer concrete cross‐sectional ratio of 1 (width) : 1.5 (depth). © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

12.
An innovative method to control shrinkage in polymer blends, by using N,N‐dimethyl‐p‐toluidine to produce phase separation in an acrylic system, was applied to synthesize polymer blends from polymethyl methacrylate (PMMA) and polytriethylene glycol dimethacrylate (PTEGDMA). The morphology of several compositions, as analyzed by scanning electron microscopy, reveals microdomains as a function of the specific composition, in contrast to conventional MMA–TEGDMA copolymers synthesized by thermal decomposition of benzoyl peroxide, used here as reference materials. Micro‐Raman and DSC analyses were also carried out to support the electron microscopy results as well. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1254–1260, 2004  相似文献   

13.
In this study, the physical and chemical changes of a poly(methyl methacrylate) (PMMA)‐modified epoxy system were examined to understand the effect of the curing conditions on its final morphology. The curing process of the PMMA–epoxy reactive system was complementarily analyzed by Fourier transform infrared spectroscopy in the near range (FT‐NIR) and fluorescence spectroscopy. The relationships among (1) the chemical conversion of the curing reaction, (2) the first moment of the fluorescence emission band (〈ν〉) arising from a chromophore chemically bonded to the epoxy reactive system, (3) the phase‐separation process, and (4) the dynamics of the epoxy thermoset during its curing process are discussed. From a chemical point of view, FT‐NIR did not reveal any significant change in the curing reaction with the presence of 2 wt % PMMA. However, in terms of physical changes, the analysis of the fluorescence response clearly showed variations in the curing reaction due to the presence of the thermoplastic polymer. Also, fluorescence allowed the estimation of the glass‐transition temperature of the system with curing when the reaction was diffusion‐controlled, whereas Fourier transform infrared spectroscopy was not sensible enough. In the second part of this study, scanning electron microscopy images of the PMMA‐modified epoxy system were analyzed to understand the effect of the temperature on the final morphology when the amount of thermoplastic was below the critical volume fraction. A linear dependence between the inverse of the mean area of the thermoplastic‐rich domains and the inverse of the absolute temperature was obtained. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

14.
Miscibility, phase diagrams and morphology of poly(ε‐caprolactone) (PCL)/poly(benzyl methacrylate) (PBzMA)/poly(styrene‐co‐acrylonitrile) (SAN) ternary blends were investigated by differential scanning calorimetry (DSC), optical microscopy (OM), and scanning electron microscopy (SEM). The miscibility window of PCL/PBzMA/SAN ternary blends is influenced by the acrylonitrile (AN) content in the SAN copolymers. At ambient temperature, the ternary polymer blend is completely miscible within a closed‐loop miscibility window. DSC showed only one glass transition temperature (Tg) for PCL/PBzMA/SAN‐17 and PCL/PBzMA/SAN‐25 ternary blends; furthermore, OM and SEM results showed that PCL/PBzMA/SAN‐17 and PCL/PBzMA/SAN‐25 were homogeneous for any composition of the ternary phase diagram. Hence, it demonstrated that miscibility exists for PCL/PBzMA/SAN‐17 and PCL/PBzMA/SAN‐25 ternary blends, but that the ternary system becomes phase‐separated outside these AN contents. Copyright © 2003 Society of Chemical Industry  相似文献   

15.
The thermal and mechanical properties of dental base materials cured by microwave and conventional heat methods were studied. The commercial dental base poly(methyl metacrylate) (PMMA) powder and liquid were mixed in a 3/1 ratio. They were polymerized by a peroxy catalyst at 65°C, then cured with a boiling water temperature and microwave radiation for periods of 5, 10, 15, 20, 25, 30, and 35 min for heat curing and 1, 2, 3, 5, and 7 min for microwave radiation. The microwave radiation outputs used were 500 and 700 W. The products of 5‐min heat curing and 1‐, 2‐, and 7‐min microwave curing were soluble in chloroform. All the others were partially soluble. The viscosity‐average molecular weights of the soluble samples were about 1 × 106. The thermal properties of the polymer samples were studied by differential scanning calorimetry (DSC). For the samples that were not cured completely, broad exothermic peaks at around 125°C were obtained in the DSC thermograms. The glass‐transition temperatures for completely cured samples were 110–120°C. The mechanical properties of the samples were determined from tensile and three‐point bending tests. The elastic modulus was highest for samples obtained by the conventional method with a 30‐min curing period. However, the bending modulus was highest for 7‐min cured samples in a 700‐W microwave. The mechanical strengths of the 700‐W output were higher than those at 500 W. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 251–256, 2003  相似文献   

16.
The chemical modification of the structure of the unsaturated polyester obtained in poly condensation process of 1,2,3,6‐tetrahydrophthalic anhydride, maleic anhydride, and ethylene glycol by well known conventional method of epoxidation with peracetic acid in mild conditions has been presented. The new material containing both epoxy groups and unsaturated double bonds in polyester chain was characterized by FTIR and 1H NMR spectra. The prepared unsaturated epoxy polyester was suitable material for further chemical modification. Both epoxy groups and unsaturated double bonds can be used as cross‐linking sites. Curing behavior, thermal, and visco‐elastic properties of the unsaturated epoxy polyester cured with different hardeners: 1,2,3,6‐tetrahydrophthalic anhydride (THPA), hexahydrophthalic anhydride (HHPA), and/or with vinyl monomer (styrene) using radical initiator—benzoyl peroxide (BPO) were studied by differential scanning calorimetry (DSC), thermo gravimetric analysis (TGA), and dynamic mechanical analysis (DMA). © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

17.
The thermal and hydro‐thermal aging of a hot‐cured epoxy system (diglycidylether of bisphenol A (DGEBA) + dicyandiamide (DDA)) in the glassy state is revisited using DSC and IR attenuated total reflection spectroscopy. Because of the diffusion of DDA from the solid particles into the liquid DGEBA matrix, curing produces a highly crosslinked amorphous matrix that contains low crosslinked amorphous regions. After full curing, the network possesses a relatively low molecular mobility and no residual reactive groups. Thermal and hydro‐thermal loading is performed at 60°C, well below the principal glass transition temperature (Tg1 = 171°C). Both aging regimes cause significant chemical and structural changes to the glassy epoxy. It undergoes a phase separation of relatively mobile segments inside the low mobile matrix, providing a second glass transition that shifts from Tg2 = 86–114°C within 108 days of aging. This phase separation is reversible on heating into the viscoelastic state. Hydro‐thermal aging leads to a reversible and a nonreversible plasticizing effect as well. On thermal aging, no chemical changes are observed but hydro‐thermal aging causes significant chemical modifications in the epoxy system. These modifications are identified as a partial degradation of crosslinks produced by the cyano groups of the DDA and correspond to the nonreversible plasticitation. These changes in the cured epoxy should exert an influence on the mechanical properties of an adhesive bond. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

18.
The reaction of poly(ethylene glycol) (PEG, number‐average molecular weight Mn = 400‐2000) and dimethyl 5‐sulfoisophthalate sodium salt (SIPM) synthesized a series of anionic polymeric surfactants having a range of molecular weights. 1H‐NMR, FTIR, and elemental analysis were employed to characterize the structures of these compounds. Also, the influences of the PEG segment lengths of PEG/SIPM copolymers on the surface tension, foaming properties, wetting power, and dispersant properties were investigated. The experimental results indicated that the solution that contained the PEG/SIPM copolymer surfactants exhibited excellent surface‐active properties. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2727–2731, 2002  相似文献   

19.
The effects of two low-profile additives (LPA), poly(vinyl acetate) (PVAc) and poly(methyl methacrylate) (PMMA) on the curing kinetics during the cure of unsaturated polyester (UP) resins at 110°C were investigated by using a differential scanning calorimeter (DSC) and a Fourier transform infrared spectrometer (FTIR). The effects of temperature, molar ratio of styrene to polyester CC bonds, and LPA content on phase characteristics of the static ternary systems of styrene–UP–PVAc and styrene–UP–PMMA prior to reaction were presented. Depending on the molar ratio of styrene to polyester CC bonds, a small shoulder or a kinetic-controlled plateau in the initial portion of the DSC rate profile was observed for the LPA-containing sample. This was due to the facilitation of intramicrogel crosslinking reactions since LPA could enhance phase separation and thus favor the formation of clearly identified microgel particles. FTIR results showed that adding LPA could enhance the relative conversion of polyester CC bonds to styrene throughout the reaction. Finally, by use of a microgel-based kinetic model and static phase characteristics of styrene–UP–LPA systems at 25°C, the effects of LPA on reaction kinetics regarding intramicrogel and intermicrogel crosslinking reactions, relative conversion of styrene to polyester CC bonds, and the final conversio have been explained. © 1995 John Wiley & Sons, Inc.  相似文献   

20.
Phase segregation behavior in PEs/DOP blends, interactions between PEs and DOP, and glass‐relaxation transitions of PEs were investigated. FTIR, DSC, and TGA data demonstrated that molecular interactions were present between PEs and DOP. DMA data demonstrated that pure PEs each (except HDPE) exhibited two loss maxima at about ?20 and ?120°C but the PEs/DOP blends (including the HDPE/DOP blend) yielded one new loss maximum at about ?60°C. The glass‐relaxation transitions corresponding to the three loss maxima on the DMA curves were designated α (?20°C), β (?60°C), and γ (?120°C) transitions and were attributed to the relaxation of the amorphous phases in the interlamellar, interfibrillar, and interspherulitic regions, respectively, based on DMA, WAXD, SAXS, and POM measurements. The controversial Tg values of PEs and their origin were thus clarified in this study. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 3591–3601, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号