首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Investigations have been made on the melt rheological behaviors of compatibilized blends composed of polystyrene, low density polyethylene and hydrogenated (styrene‐butadiene‐styrene) triblock copolymer used as a compatibilizer. The experiments were carried out on a capillary rheometer. The effects of shear stress, temperature and blending ratio on the activation energy for viscous flow and melt viscosity of the blends are described. The study shows that the viscosity of the blends exhibits a maximum or minimum value at a certain blending ratio. The activation energy for viscous flow decreases with increasing LDPE content. Furthermore, the concept of equal‐viscosity temperature is presented and its role in the processing of the blend is discussed. In addition, the morphology of the extrudate sample of the blends was observed by scanning electron microscopy and the correlation between the morphology and the rheological properties is explored. © 1999 Society of Chemical Industry  相似文献   

2.
Blends of natural rubber (NR) and polystyrene (PS) were prepared by melt mixing in a Brabender plasticorder and by solution casting using chloroform as the casting solvent. Earlier studies have indicated that these blends are incompatible and immiscible, and their compatibility can be improved by the addition of a graft copolymer of NR and PS (NR-g-PS). The rheological behavior of these blends has been carried out in the presence and absence of the compatibilizer using a capillary rheometer and a melt flow indexer. The effects of blend ratio, processing techniques (melt mixing versus solution casting), shear stress, and temperature on the rheological behavior have been studied in detail. Both in the presence and absence of the copolymer, the blends showed a decrease in viscosity with an increase of shear stress, indicating pseudoplastic nature. Solution-cast blends showed a higher viscosity as compared to melt-mixed blends. The viscosity versus composition curve of both melt-mixed and solution-cast blends showed negative deviation from the additivity at a higher shear rate region. This is associated with the interlayer slip between the highly incompatible NR and PS phases. The effects of graft copolymer loading and temperature on solution-cast blends were studied, and it was found that as the copolymer loading increases, the shear viscosity increases. This is due to the high interfacial interaction between the two components in the presence of the copolymer. The copolymer, in fact, locates at the interface and makes the interface more broad. However, at higher loading of the copolymer, the viscosity of the blends decreases. This may be associated with the formation of micelles, which have a plasticizing action on the viscosity of the blends. Melt elasticity parameters like principal normal stress difference, recoverable elastic shear strain, and die swell were evaluated. Master curves have been generated using modified viscosity and shear rate functions that contain the melt flow index as a parameter. The extrudate morphology of the blends was studied using a scanning electron microscope. Addition of the copolymer reduces the domain size of the dispersed phase, followed by a leveling off at a higher concentration. The leveling off is an indication of interfacial saturation. The interparticle distance also decreased followed by a leveling off at a higher loading of the copolymer. © 1998 John Wiley & Sons, Inc. J. Appl. Polym. Sci. 69: 2673–2690, 1998  相似文献   

3.
Melt rheological properties of high density polyethylene and poly(ethylene terephthalate) (HDPE/PET) blends compatibilized by an ethylene–butyl acrylate–glycidyl methacrylate terpolymer (EBAGMA) were studied by means of a HAAKE torque rheometer and a capillary rheometer. The phase morphology of the blends was evaluated by a scanning electron microscope (SEM). The results showed that the melts of blends behave pseudoplasticity. The addition of EBAGMA strengthens the interfacial adhesion between HDPE and PET and improves the phase dispersion due to reactive compatibilization. It was observed that the balance torque, melt viscosity, and sensitivity of melt viscosity to shear rate of the melts increase with increasing content of EBAGMA, but the melt flow index and activation energy decrease. At the same time, the plasticizing time is shortened indicating that the processability of the compatibilized blends has been improved. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

4.
The melt processability and physico‐mechanical properties of blends of natural rubber (NR) and ethylene propylene diene rubber (EPDM) containing different dosages (0–10 phr) of phosphorylated cardanol prepolymer (PCP) were studied in unfilled and china‐clay‐filled mixes. The plasticizing effect of PCP in the blends was evidenced by progressive reduction in power consumption of the mixing and activation energy for melt flow with an increase in the dosage of PCP. The PCP‐modified blend vulcanizates showed higher tensile properties and tear strength despite a decrease in the chemical crosslink density (CLD) index. This is presumably due to the formation of a crosslinked network structure of PCP with the rubbers and improved dispersion of the filler particles in the rubber matrix, as evidenced by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Thermogravimetric analysis showed an increase in thermal stability of the blend vulcanizate in presence of 5 phr of PCP. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5123–5130, 2006  相似文献   

5.
The morphology and mechanical properties of PVC/SMA‐g‐PA6 blends were investigated in this paper. Graft to polymer SMA‐g‐PA6 was prepared via a solution graft reaction between SMA and PA6. FTIR test evidences the occurrence of the graft reaction between SMA and PA6. DSC analysis shows that SMA‐g‐PA6 has a lower melting point of 187°C, which may result in a decrease in crystallinity of PA6 and thus enable efficient blending of SMA‐g‐PA6 and PVC. Compatibilization was evidenced by the dramatic increase in mechanical properties, the smaller particle size and finer dispersion of PA6 in PVC matrix, and, further, a cocontinuous morphology at 16 wt % SMA‐g‐PA6 content. SMA‐g‐PA6 from the solution graft reaction can toughen and reinforce PVC material. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 432–439, 2004  相似文献   

6.
Polymer blends of poly(propylene) (PP) and polyacetal (polyoxymethylene, POM) with ethylene vinyl alcohol (EVOH) copolymers were investigated by differential scanning calorimetry (DSC), rheological, tensile, and impact measurements, Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The PP–POM–EVOH blends were extruded with a co‐rotating twin‐screw extruder. The ethylene group in the EVOH is partially miscible with PP, whereas the hydroxyl group in the EVOH can form hydrogen bonding with POM. The EVOH tends to reside along the interface, acting as a surfactant to reduce the interfacial tension and to increase the interfacial adhesion between the blends. Results from SEM and mechanical tests indicate that a small quantity of the EVOH copolymer or a smaller vinyl alcohol content in the EVOH copolymer results in a better compatibilized blend in terms of finer phase domains and better mechanical properties. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1471–1477, 2003  相似文献   

7.
The development of the multiphase morphology of uncompatibilized blends of poly(butylene terephthalate) (PBT) and acrylonitrile–butadiene–styrene terpolymer (ABS) and PBT/ABS blends compatibilized with methyl‐methacrylate glycidyl‐methacrylate (MMA‐GMA) reactive copolymers during compounding in a twin‐screw extruder and subsequent injection molding was investigated. Uncompatibilized PBT/ABS 60/40 (wt %) and compatibilized PBT/ABS/MMA‐GMA with 2 and 5 wt % of MMA‐GMA showed refined cocontinuous morphologies at the front end of the extruder, which coarsened towards the extruder outlet. Coarsening in uncompatibilized PBT/ABS blends is much more pronounced than in the compatibilized PBT/ABS/MMA‐GMA equivalents and decreases with increasing amounts of the MMA‐GMA. For both systems, significant refinement on the phase morphology was found to occur after the blends pass through the extruder die. This phenomenon was correlated to the capacity of the die in promoting particles break‐up due to the extra elongational stresses developed at the matrix entrance. Injection molding induces coarsening of the ABS domains in the case of uncompatibilized PBT/ABS blends, while the reactive blend kept its refined phase morphology. Therefore, the compatibilization process of PBT/ABS/MMA‐GMA blends take place progressively leading to a further refinement of the phase morphology in the latter steps, owing to the slow reaction rate relative to epoxide functions and the carboxyl/hydroxyl groups. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 102–110, 2007  相似文献   

8.
Compatibilization of the blends of polydimethyl siloxane (PDMS) rubber and low‐density polyethylene (LDPE) was achieved through reactive processing during extrusion in a Monsanto Processability Tester (MPT). The chemorheological characteristics of 50 : 50 LDPE : PDMS blends with varying proportions (0–8 wt %) of ethylene comethyl acrylate (EMA) were investigated at three different temperatures (170, 190, and 210°C) and four different shear rates (61.3, 122.6, 306.6, and 613.1 s?1). It was found that EMA reacts with vinyl groups of PDMS rubber at a temperature of 190°C during extrusion through the capillary of MPT, forming EMA‐grafted‐PDMS rubber (EMA‐g‐PDMS), which acts as the compatibilizer for the blend systems. The results are based on IR spectroscopy, melt rheology, and phase morphology of the blends. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 12: 2810–2817, 2003  相似文献   

9.
The morphology of immiscible blends of nylon 6 and ethylene propylene rubber blends (EPM) was studied. The blends were prepared by melt blending in a twin‐screw miniextruder and a Haake Rheocord mixer. The influence of the blend ratio, time of mixing, rotation speed of the rotors, mixing temperature, and quenching of the extruded melt at low temperature on the phase morphology of the blends was quantitatively analyzed. The morphology was examined by scanning electron microscopy (SEM) after preferential extraction of the minor phase. The SEM micrographs were quantitatively analyzed for domain‐size measurements. The morphology of the blends indicated that the EPM phase was preferentially dispersed as domains in the continuous nylon matrix up to 40 wt % of its concentration. A cocontinuous morphology was observed at 50 and 60 wt % EPM content followed by a phase inversion beyond 60 wt % of EPM where the nylon phase was dispersed as domains in the continuous EPM phase. The size, shape, and distribution of the domains were evaluated by image analysis as a function of the blend composition. The effect of the time of mixing on the phase morphology was studied up to 20 min for the 30/70 EPM/nylon blend. The most significant domain breakup was observed within the first 3 min of mixing followed by a leveling off up to 15 min. This may be associated with the equilibrium between the domain breakup and coalescence. The influence of rotor speed on the morphology was insignificant at a high rotor speed although a significant effect was observed by changing the rotor speed from 9 to 20 rpm. The influence of high‐temperature annealing, repeated cycles of extrusion, the molecular weight of the nylon matrix, and the nature of the mixer type (twin‐screw miniextruder versus Haake Rheocord mixer) on the morphology was also investigated in detail. The experimental results were compared with literature data. Finally, the extent of interface adhesion in these blends was analyzed by examination of the fracture‐surface morphology. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1405–1429, 1999  相似文献   

10.
The compatibilization of polypropylene (PP)/nylon 6 (PA6) blends with a new PP solid‐phase graft copolymer (gPP) was systematically studied. gPP improved the compatibility of PP/PA6 blends efficiently. Because of the reaction between the reactive groups of gPP and the NH2 end groups of PA6, a PP‐g‐PA6 copolymer was formed as a compatibilizer in the vicinity of the interfaces during the melting extrusion of gPP and PA6. The tensile strength and impact strength of the compatibilized PP/PA6 blends obviously increased in comparison with those of the PP/PA6 mechanical blends, and the amount of gPP and the content of the third monomer during the preparation of gPP affected the mechanical properties of the compatibilized blends. Scanning electron microscopy and transmission electron microscopy indicated that the particle sizes of the dispersed phases of the compatibilized PP/PA6 blends became smaller and that the interfaces became more indistinct in comparison with the mechanical blends. The microcrystal size of PA6 and the crystallinity of the two components of the PP/PA6 blends decreased after compatibilization with gPP. The compatibilized PP/PA6 blends possessed higher pseudoplasticity, melt viscosity, and flow activation energy. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 420–427, 2004  相似文献   

11.
The compatibilizing efficiency of three different compatibilizers on the thermoplastic polyurethane/styrene‐co‐acrylonitrile (TPU/SAN) blends properties was investigated after compatibilizer's incorporation via melt‐mixing. The compatibilizers studied were as follows: poly‐ε‐caprolactone (PCL) of different molecular weight (Mw), a mixture of polystyrene‐block‐polycaprolactone (PS‐b‐PCL) and polystyrene‐block‐poly (methyl methacrylate) (PS‐b‐PMMA), and a mixture of polyisoprene‐block‐polycaprolactone (PI‐b‐PCL) and polybutadiene‐block‐poly (methyl methacrylate) (PB‐b‐PMMA). In our study, the effect of 5 wt % added compatibilizers on TPU/SAN blends morphology was examined. The transmission electron microscopy (TEM) was used to study the morphology at different length scales and to determine the compatibilizer's location. Investigations showed the different improvement of properties, because of the different incorporation of compatibilizers in the polymer blend. The morphology influence on the rheological behavior of compatibilized blends was investigated with a stress‐controlled rheometer (Rheometric Dynamic Stress Rheometer, SR‐500). Different compatibilization activity was found for different system. It was also found that compatibilization activity of added compatibilizer strongly depends on the comaptibilizer's Mw. Blends compatibilized with PCL showed superior properties as compared with the other examined blends. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2303–2316, 2006  相似文献   

12.
Blends of Nylon 66(Ny66) and polyethylene naphthalate (PEN) with 30, 50, 70 wt % Ny66, and one blend with 50% Ny66 and 3% compatibilizer, prepared by extrusion and injection molding, were investigated using 13C and 1H nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FTIR), X‐ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). A new band in the FTIR spectra of blends, at 1324–1329 cm?1 is interpreted as arising from partial reaction of Ny66 and PEN occurring during melt processing. However, NMR spectra show no evidence of interchange reaction between Ny66 and PEN. SEM indicates that the phase inversion point is close to equal proportions by weight of the two homopolymers. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 1504–1514, 2001  相似文献   

13.
The morphologies of nylon 6/acrylonitrile–butadiene–styrene blends compatibilized with a methyl methacrylate/maleic anhydride copolymer, with 3–20 wt % maleic anhydride, were examined by transmission electron microscopy. Some staining techniques were employed for identifying the various phases. The binary blends were immiscible and exhibited poor mechanical properties that stemmed from the unfavorable interactions among their molecular segments. This produced an unstable and coarse phase morphology and weak interfaces among the phases in the solid state. The presence of the copolymer in the blends clearly led to a more efficient dispersion of the acrylonitrile–butadiene–styrene phase and consequently optimized Izod impact properties. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3512–3518, 2003  相似文献   

14.
Polypropylene (PP) and acrylonitrile–butadiene–styrene blends of different composition were prepared using a single‐screw extruder. The binary blend of PP/ABS was observed to be incompatible and shows poor mechanical properties. PP‐g‐2‐hydroxyethyl methacrylate (2‐HEMA) was used as a compatibilizer for the PP/ABS blends. The ternary compatibilized blends of PP/ABS/PP‐g‐2‐HEMA showed improvement in the mechanical properties. Electron micrographs of these blends showed a homogeneous and finer distribution of the dispersed phase. The mechanical performance increased particularly in the PP‐rich blend. The 2.5‐phr (part per hundred of resin) compatibilizer was observed to bring improvement to the properties. The suitability of various existing theoretical models for the predication of the tensile moduli of these blends was examined. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 72–78, 2003  相似文献   

15.
The reactive compatibilization of syndiotactic polystyrene (sPS)/oxazoline‐styrene copolymer (RPS)/maleic anhydride grafted ethylene‐propylene copolymer (EPR‐MA) blends is investigated in this study. First, the miscibility of sPS/RPS blends is examined by thermal analysis. The cold crystallization peak (Tcc) moved toward higher temperature with increased PRS, and, concerning enthalpy relaxation behaviors, only a single enthalpy relation peak was found in all aged samples. These results indicate that the sPS/RPS blend is miscible along the various compositions and RPS can be used in the reactive compatibilization of sPS/RPS/EPR‐MA blends. The reactive compatibilized sPS/RPS/EPR‐MA blends showed finer morphology than sPS/EPR‐MA physical blends and higher storage modulus (G') and complex viscosity (η*) when RPS contents were increased. Moreover, the impact strength of sPS/RPS/EPR‐MA increased significantly compared to sPS/EPR‐MA blend, and SEM micrographs after impact testing show that the sPS/RPS/EPR‐MA blend has better adhesion between the sPS matrix and the dispersed EPR‐MA phase. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2084–2091, 2002  相似文献   

16.
The melt rheological properties of linear low‐density polyethylene (LLDPE)/ethylene vinyl acetate (EVA) blends were investigated with special reference to the effect of blend ratio, temperature, shear rate, compatibilization, and dynamic vulcanization. The melt viscosity of the blends determined with a capillary rheometer is found to decrease with an increase of shear rate, which is an indication of pseudoplastic behavior. The viscosity of the blend was found to be a nonadditive function of the viscosities of the component polymers. A negative deviation was observed because of the interlayer slip between the polar EVA and the nonpolar LLDPE phases. The melt viscosity of these blends decreases with the increased concentration of EVA. The morphology of the extrudate of the blends at different shear rates and blend ratios was studied and the size and distribution of the domains were examined by scanning electron microscopy. The morphology was found to depend on shear rate and blend ratio. Compatibilization of the blends with phenolic‐ and maleic‐modified LLDPE increased the melt viscosity at lower wt % of compatibilizer and then leveled off. Dynamic vulcanization is found to increase the melt viscosity at a lower concentration of DCP. The effect of temperature on melt viscosity of the blends was also studied. Finally, attempts were made to correlate the experimental data on melt viscosity and cocontinuity region with different theoretical models. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3210–3225, 2002  相似文献   

17.
We studied tensile behavior of low‐molecular‐weight (MW) polypropylene (PP)/ethylene–propylene rubber (EPR; 70/30) blends from the viewpoint of the MWs of PP and EPR and the compatibility between PP and EPR. The value of the melt flow rate of PP varied from 30 to 700 g/10 min at 230°C. We studied the compatibility between PP and EPR by varying the propylene content in EPR (27 and 68 wt %). At the initial elongation stage, crazes were observed in all blends. When blends included EPR with 27 wt % propylene, the elongation at break of the low‐MW PP improved little. The blends with EPR and 68 wt % propylene content were elongated further beyond their yielding points. The elongation to rupture was increased with increasing MW of EPR. Molecular orientation of the low‐MW PP was manifested by IR dichroism measurements and X‐ray diffraction patterns. The blends of low‐MW PP and EPR could be elongated by the partial dissolution of EPR of high‐MW in the PP amorphous phase. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 46–56, 2002  相似文献   

18.
Vapor transport offers one the unique ability to study structure–property relationships in polymers. An analysis of the transport of chlorinated hydrocarbons through nylon/ethylene–propylene rubber (EPR) blend membranes showed us how the permeation behavior varied according to the structure and morphology of the material under study. Binary blends were subjected to solvent transport studies. The solvent uptake increased with EPR content and decreased with nylon content. The behavior varied with the blend morphology. The effects of blend ratio, compatibilization, and dynamic vulcanization on the vapor permeation behavior of nylon/EPR blends were investigated in detail. The results from the vapor permeation studies were complimentary to those of the morphology studies. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3756–3764, 2004  相似文献   

19.
将三元乙丙橡胶(EPDM)与环氧化天然橡胶(ENR)共交联改性后,再与天然橡胶(NR)共混,考察了ENR共交联改性EPDM/NR共混胶的硫化特性、硫化胶的物理机械性能、溶胀指数和耐热空气老化性能,并对该硫化胶进行了差示扫描量热分析。结果表明,EPDM经过ENR共交联改性后与NR共混,ENR共交联改性EPDM/NR共混胶的交联程度明显提高,各相达到了同步交联,硫化胶的综合性能得到了显著改善。  相似文献   

20.
Poly(ethylene‐co‐propylene) (EPR) was functionalized to varying degrees with glycidyl methacrylate (GMA) by melt grafting processes. The EPR‐graft‐GMA elastomers were used to toughen poly(butylene terephthalate) (PBT). Results showed that the grafting degree strongly influenced the morphology and mechanical properties of PBT/EPR‐graft‐GMA blends. Compatibilization reactions between the carboxyl and/or hydroxyl of PBT and epoxy groups of EPR‐graft‐GMA induced smaller dispersed phase sizes and uniform dispersed phase distributions. However, higher degrees of grafting (>1.3) and dispersed phase contents (>10 wt%) led to higher viscosities and severe crosslinking reactions in PBT/EPR‐graft‐GMA blends, resulting in larger dispersed domains of PBT blends. Consistent with the change in morphology, the impact strength of the PBT blends increased with the increase in EPR‐graft‐GMA degrees of grafting for the same dispersion phase content when the degree of grafting was below 1.8. However, PBT/EPR‐graft‐GMA1.8 displayed much lower impact strength in the ductile region than a comparable PBT/EPR‐graft‐GMA1.3 blend (1.3 indicates degree of grafting). Morphology and mechanical results showed that EPR‐graft‐GMA 1.3 was more suitable in improving the toughness of PBT. SEM results showed that the shear yielding properties of the PBT matrix and cavitation of rubber particles were major toughening mechanisms. Copyright © 2006 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号