首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
The main thermodynamic parameters were evaluated for the dextran/methoxy ethylene glycol (MEG) system by viscosity measurements at 25, 30, 35, 40, and 45°C. The long-range and short-range interaction parameters were determined by extrapolation methods, i.e, Kurata-Stockmayer-Fixman, Berry, and Inagaki-Suzuki-Kurata equations. Calculated values, as well as the unperturbed root-mean-square end-to-end distance and hydrodynamic expansion factor, were interpreted mainly on the basis of hydrogen-bond formation between polymer segments and dextran/MEG molecules in solution. The thermodynamic interaction parameter was also evaluated for the same system. The theta temperatures were obtained from the temperature dependence of the interaction parameter, dependence of (1/2-χ) and the second virial coefficient in the temperature interval of 25 and 45°C for the system and quite a good accordance was indicated with the calculated values evaluated via extrapolation and interpolation methods. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 948–953, 2001  相似文献   

2.
The effect of the heat treatment on the tensile properties and the dynamic moduli of polymer matrix films and polymer electrolytes were studied to further increase the mechanical properties. The crosslinking of latex particles brought about their improvements by heating. We have fabricated the polymer electrolyte with a tensile strength of 3.0 MPa, together with a conductivity above 1 mS/cm for application to a lithium secondary battery. This polymer electrolyte had the highest tensile strength among the known gel polymer electrolytes having conductivity over 1 mS/cm, although mechanical properties of plasticized polymer electrolytes have rarely been reported. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1835–1839, 1999  相似文献   

3.
Thermal properties of blends of poly(hydroxybutyrate‐co‐hydroxyvalerate) (PHBV) and poly(styrene‐co‐acrylonitrile) (SAN) prepared by solution casting were investigated by differential scanning calorimetry. In the study of PHBV‐SAN blends by differential scanning calorimetry, glass transition temperature and melting point of PHBV in the PHBV‐SAN blends were almost unchanged compared with those of the pure PHBV. This result indicates that the blends of PHBV and SAN are immiscible. However, crystallization temperature of the PHBV in the blends decreased approximately 9–15°. From the results of the Avrami analysis of PHBV in the PHBV‐SAN blends, crystallization rate constant of PHBV in the PHBV‐SAN blends decreased compared with that of the pure PHBV. From the above results, it is suggested that the nucleation of PHBV in the blends is suppressed by the addition of SAN. From the measured crystallization half time and degree of supercooling, interfacial free energy for the formation of heterogeneous nuclei of PHBV in the PHBV‐SAN blends was calculated and found to be 2360 (mN/m)3 for the pure PHBV and 2920–3120 (mN/m)3 for the blends. The values of interfacial free energy indicate that heterogeneity of PHBV in the PHBV‐SAN blends is deactivated by the SAN. This result is consistent with the results of crystallization temperature and crystallization rate constant of PHBV in the PHBV‐SAN blends. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 673–679, 2000  相似文献   

4.
    
Poly(vinylidene fluoride‐co‐hexafluoropropylene) (P(VDF‐HFP)) based composite polymer electrolyte (CPE) membranes were successfully prepared by electrospinning followed by electrophoretic deposition processes, and desirable polymer electrolytes were obtained after being activated in liquid electrolytes. The physicochemical properties of the CPEs with different electrophoretically deposited nano‐SiO2 contents were investigated by SEM, XRD, TGA, linear sweep voltammetry and electrochemical impedance spectroscopy measurements. When the ratio of electrophoretically deposited nano‐SiO2 to P(VDF‐HFP) is up to 4 wt%, the results show that the CPE membrane presents a very uniform surface with abundant interconnected micropores and possesses excellent mechanical tensile strength with high thermal and electrochemical stability; the ionic conductivity at room temperature can reach 3.361 mS cm?1 and the reciprocal temperature dependence of the ionic conductivity follows a Vogel ? Tamman ? Fulcher relationship. The interfacial resistance of the assembled Li/CPE/Li simulated cell can rapidly increase to a steady value of about 950 Ω from the initial value of about 700 Ω at 30 °C during 15 days' storage. The battery performance test suggests that the CPE also shows excellent compatible properties with commercial LiCoO2 and graphite materials. © 2015 Society of Chemical Industry  相似文献   

5.
    
Clay‐dispersed poly(styrene‐co‐acrylonitrile) nanocomposites (PSAN) were synthesized by a free radical polymerization process. The montmorillonite (MMT) was modified by a cationic surfactant hexadecyltrimethylammonium chloride. The structures of PSAN were determined by wide‐angle X‐ray diffraction and FTIR spectroscopy. The dispersion of silicate layers in the polymer matrix was also revealed by transmission electron microscopy (TEM). It was confirmed that the clay was intercalated and exfoliated in the PSAN matrix. The increased thermal stability of PSAN with the addition of clay was observed by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The dielectric properties of PSAN were measured in the frequency range 100 Hz to 1 MHz at 35–70°C. It was found that the dielectric constant from the dipole orientation had been suppressed due to the intercalation of clay. The dielectric loss is strongly related to the residual sodium content of clay, which increases as the sodium content increases by the addition of clay. Copyright © 2004 Society of Chemical Industry  相似文献   

6.
    
Poly(styrene‐co‐methyl methacrylate) nanocomposites were synthesized using reverse atom transfer radical polymerization (RATRP) in miniemulsion. Cetyltrimethylammonium bromide (CTAB) as a cationic surfactant applicable at higher temperatures was used for miniemulsion stabilization. Successful RATRP was carried out by using 4,4′‐dinonyl‐2,2′‐bipyridine (dNbPy) as ligand. Monodispersed droplets and particles with sizes in the range of 200 nm were revealed by dynamic light scattering (DLS). Conversion and molecular weight study was carried out using gravimetry and size exclusion chromatography (SEC) respectively. By adding clay content, a decrease in the conversion and molecular weight and an increase in the PDI value of the nanocomposites are observed. Thermal stability of the nanocomposites in comparison with the neat copolymer is revealed by thermogravimetric analysis (TGA). Increased Tg values by adding clay content was also obtained using differential scanning calorimetry (DSC). Scanning electron microscopy (SEM) images of the nanoconposite with 1 wt % of nanoclay loading, display monodispersed spherical particles with sizes in the range of ~ 200 nm. SEM findings are more compiled with dynamic light scattering (DLS) results. Well‐dispersed exfoliated clay layers in the polymer matrix of the nanocomposite with 1 wt % nanoclay loading is confirmed by transmission electron microscopy (TEM) images and X‐ray diffraction (XRD) data. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

7.
    
Biodegradable polymer nanocomposites have been developed in this study as materials for use in the packaging of moisture‐sensitive products. Poly(lactic acid) (PLA) was the main component of the nanocomposites with poly(butylene adipate‐co‐terephthalate) (PBAT) as flexibility enhancer. Tetrabutyl titanate was also added as a compatibilizer to enhance the interfacial affinity between PLA and PBAT by inducing the formation of some PLA/PBAT via transesterification during the melt blending process, thereby improving the mechanical properties of the blends. Silver‐loaded kaolinite synthesized via chemical reduction was also incorporated into the compatibilized blends for further property improvement. Herein, we report a novel biodegradable quaternary nanocomposite system with intercalated‐exfoliated clay dispersion that was uniquely achieved by increasing the interlamellar space between kaolinite layers through silver nanoparticle insertion. The resultant nanocomposites containing as little as 4 phr modified clay reduced the elongation at break from 213.0 ± 5.85% to 53.8 ± 1.81%, enhanced thermal stability (initial decomposition temperature increased from 378 °C to 399 °C) and exhibited a water vapor permeability reduction of 41.85%. On the basis of these properties, the developed nanocomposites are considered to be promising candidates for use in bio‐packaging applications to replace non‐biodegradable and petro‐based plastics. © 2014 Society of Chemical Industry  相似文献   

8.
    
Well defined poly (styrene‐co‐methylstyrene) grafted polyaniline/organo‐modified MgAl layered double hydroxide (LDH) was produced through solution intercalation method. After LDH nanoparticles were modified by the anion exchange reaction of MgAl (Cl) LDH with sodium dodecyl benzene sulfonate, Poly (styrene‐co‐methylstyrene) copolymers were synthesized by “living” free radical polymerization and then brominated with N‐bromosuccinimide. Afterwards, 1,4‐phenylenediamine was linked to brominated copolymers and prepared functionalized copolymer with amine. Poly (St‐co‐MSt)‐g‐PANI, has been synthesized by adding solution of ammonium persulfate and p‐toluenesufonic acid in DMSO solvent. Finally, Poly (styrene‐co‐methylstyrene) grafted‐Polyaniline/LDH nanocomposites were prepared by solution intercalation method. Characterization of these well‐defined nanocomposites included FT‐IR, gel permeation chromatography, thermogravimetric analysis, differential scanning calorimeter, transmission electron microscopy, and X‐ray diffraction. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

9.
    
Poly(styrene‐co‐butadiene) rubber (SBR) and polybutadiene rubber (BR)/clay nanocomposites have been prepared. The effects of the incorporation of inorganically and organically modified clays on the vulcanization reactions of SBR and BR were analysed by rheometry and differential scanning calorimetry. A reduction in scorch time (ts1) and optimum time (t95) was observed for both the rubbers when organoclay was added and this was attributed to the amine groups of the organic modifier. However, ts1 and t95 were further increased as the clay content was increased. A reduction in torque value was obtained for the organoclay nanocomposites, indicating a lower number of crosslinks formed. The organoclays favoured the vulcanization process although the vulcanizing effect was reduced with increasing clay content. The tensile strength and elongation of SBR were improved significantly with organoclay. The improvement of the tensile properties of BR with organoclay was less noticeable than inorganic‐modified clay. Nevertheless, these mechanical properties were enhanced with addition of clay. The mechanical properties of the nanocomposites were dependent on filler size and dispersion, and also compatibility between fillers and the rubber matrix. Copyright © 2004 Society of Chemical Industry  相似文献   

10.
固体聚合物电解质具有质轻、安全、易加工等优点,在锂离子电池中具有巨大的应用价值。主要综述了以PVDF-HFP共聚物为基的聚合物电解质的研究工作,介绍了PVDF-HFP固体电解质的制备方法,主要讨论了PVDF-HFP电解质的改性措施,对今后的发展方向作了简单展望。  相似文献   

11.
Blends of poly(3‐hydroxy butyrate‐co‐3‐hydroxy valerate) (PHBV) and poly(ethylene oxide) (PEO) were prepared by casting from chloroform solutions. Crystallization kinetics and melting behavior of blends have been studied by differential scanning calorimetry and optical polarizing microscopy. Experimental results reveal that the constituents are miscible in the amorphous state. They form separated crystal structures in the solid state. Crystallization behavior of the blends was studied under isothermal and nonisothermal conditions. Owing to the large difference in melting temperatures, the constituents crystallize consecutively in blends; however, the process is affected by the respective second component. PHBV crystallizes from the amorphous mixture of the constituents, at temperatures where the PEO remains in the molten state. PEO, on the other hand, is surrounded during its crystallization process by crystalline PHBV regions. The degree of crystallinity in the blends stays constant for PHBV and decreases slightly for PEO, with ascending PHBV content. The rate of crystallization of PHBV decreases in blends as compared to the neat polymer. The opposite behavior is observed for PEO. Nonisothermal crystallization is discussed in terms of a quasi‐isothermal approach. Qualitatively, the results show the same tendencies as under isothermal conditions. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2776–2783, 2006  相似文献   

12.
    
Poly(D ,L ‐lactide‐co‐glycolide) (PLGA) and poly(ethylenimine) (PEI) were blended and found to form a homogeneous pH sensitive matrix for drug release. Differential scanning calorimetry (DSC) studies of the PLGA/PEI blends showed a single glass transition temperature at all compositions. Fourier transform infrared spectroscopy (FTIR) demonstrated that the PLGA carbonyl peak at 1760 cm?1 shifted to 1666 cm?1 as a result of amide bond formation between the two polymers. This was confirmed by 13C nuclear magnetic resonance studies. A PLGA/PEI matrix of 90/10 weight ratio was chosen for evaluation for controlled drug release. Both hydrophobic β‐lapachone and hydrophilic rhodamine B showed pH dependent release profiles with faster release kinetics at lower pH values. The observed pH sensitive drug release was mainly attributed to two factors, pH dependent swelling and protonation of the PEI‐PLGA matrix. These results demonstrate utility of a PLGA/PEI matrix and its potential application in pH responsive drug delivery. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 89–96, 2006  相似文献   

13.
    
The intermolecular hydrogen bonding interactions between poly(3‐hydroxybutyrate) and poly(styrene‐co‐vinyl phenol) copolymers with mutual solvent epichlorohydrin were thoroughly investigated by steady‐state fluorescence and viscosity techniques. Fluorescence spectroscopy along with viscosity technique was used to asses the intermolecular hydrogen bonding between poly‐(3‐hydroxybutyrate) and its blends with five copolymer samples of styrene–vinyl phenol, containing different proportions of vinyl phenol but similar average molecular weight and polydispersity index. In the case of very low OH contents (2–4 mol %), as expected, both components of poly(3‐hydroxybutyrate) and poly(styrene‐co‐4‐vinylphenol) chains are well separated and remain so independently of the mixed polymer ratio and overall polymer concentration as well. Conversely, when the OH content reaches 5.8 mol % or more, a significant decrease of the intrinsic fluorescence intensity emitted by the copolymer is detected upon addition of aliquots of poly(3‐hydroxybutyrate). In these cases, an average value for the interassociation equilibrium constant, KA = 8.7, was obtained using a binding model formalism. A good agreement of these results with those obtained from complementary viscosity measurements, through the interaction parameter, Δb, was found. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 900–910, 2006  相似文献   

14.
    
The poly(propylene carbonate maleate) (PPCMA) was synthesized by the terpolymerization of carbon dioxide, propylene oxide, and maleic anhydride. The PPCMA polymer can be readily crosslinked using dicumyl peroxide (DCP) as crosslinking agent and then actived by absorbing liquid electrolyte to fabricate a novel PPCMA gel polymer electrolyte for lithium‐ion battery. The thermal performance, electrolyte uptake, swelling ratio, ionic conductivity, and lithium ion transference number of the crosslinked PPCMA were then investigated. The results show that the Tg and the thermal stability increase, but the absorbing and swelling rates decrease with increasing DCP amount. The ionic conductivity of the PPCMA gel polymer electrolyte firstly increases and then decreases with increasing DCP ratio. The ionic conductivity of the PPCMA gel polymer electrolyte with 1.2 wt % of DCP reaches the maximum value of 8.43 × 10−3 S cm−1 at room temperature and 1.42 × 10−2 S cm−1 at 50°C. The lithium ion transference number of PPCMA gel polymer electrolyte is 0.42. The charge/discharge tests of the Li/PPCMA GPE/LiNi1/3Co1/3Mn1/3O2 cell were evaluated at a current rate of 0.1C and in voltage range of 2.8–4.2 V at room temperature. The results show that the initial discharge capacity of Li/PPCMA GPE/LiNi1/3Co1/3Mn1/3 O2 cell is 115.3 mAh g−1. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

15.
通过自由基引发,以有机增塑剂为溶剂,用原位聚合的方式制备出有机累托石/聚甲基丙烯酸甲酯[organic-modified rectorite/poly(methyl methacrylate),OREC/PMMA]凝胶聚合物电解质(gel polymer electrolyte,GPE),研究了不同的分散工艺对纳米GPE(nano-GPE,NGPE)膜性能的影响.通过X射线衍射和透射电镜探讨NGPE的微观结构,并初步研究了NGPE膜的离子电导率(σ)和5%质量损失率对应的初始热分解温度(θi).结果表明:OREC片层精细呈解离状,良好地分散在凝胶体系中.随OREC添加质量(下同)的增加,NGPE的σ及θi均呈现先增大后减小的趋势.当OREC的添加量为5%时,具有较高的σ和θi.  相似文献   

16.
    
In this report we outline recent work on the evaluation of magnesium carbonate‐based flame retardants for polymers commonly used in halogen‐free flame retardant wire and cable applications: poly(ethylene‐co‐vinyl acetate) (EVA) and poly(ethylene‐co‐ethyl acrylate) (EEA). Natural magnesium carbonate (magnesite), synthetic magnesium carbonate (hydromagnesite), and hydromagnesite/huntite blends were combined with EVA or EEA and tested for flame retardancy effectiveness with the cone calorimeter. The flammability results showed that the effectiveness of these carbonates was polymer dependent, suggesting that polymer degradation chemistry played a role in the flammability reduction mechanism. Hydromagnesites were, in general, more effective in reducing flammability, being comparable in performance to magnesium hydroxide. Finally, we report some polymer–clay (organically treated montmorillonite and magadiite) + magnesium carbonate flame retardant results which showed that the nanocomposite yielded mixed results. Specifically, the polymer–clay nanocomposite samples did not always yield the greatest reductions in peak heat release rate. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
    
Poly(styrene‐co‐methacrylic acid) containing 29 mol % of methacrylic acid (SMA‐29) and poly(isobutyl methacrylate‐co‐4‐vinylpyridine) containing 20 mol % of 4‐vinylpyridine (IBM4VP‐20) were synthesized, characterized, and used to elaborate binary and ternary nanocomposites of different ratios with a 3% by weight hexadecylammonium‐modified bentonite from Maghnia (Algeria) by casting method from tetrahydrofuran (THF) solutions. The morphology and the thermal behavior of these binary and ternary elaborated nanocomposites were investigated by X‐ray diffraction, scanning electron microscopy, FTIR spectroscopy, differential scanning calorimetry, and thermogravimetry. Polymer nanocomposites and nanoblends of different morphologies were obtained. The effect of the organoclay and its dispersion within the blend matrix on the phase behavior of the miscible SMA29/IBM4VP20 blends is discussed. The obtained results showed that increasing the amount of SMA29 in the IBM4VP20/SMA29 blend leads to near exfoliated nanostructure with significantly improved thermal stability. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

18.
    
Novel blend-based gel polymer electrolyte (GPE) films of thermoplastic polyurethane (TPU) and poly(vinylidene fluoride) (PVdF) (denoted as TPU/PVdF) have been prepared by electrospinning. The electrospun thermoplastic polyurethane-co-poly (vinylidene fluoride) membranes were activated with a 1M solution of LiClO4 in EC/PC and showed a high ionic conductivity about 1.6 mS cm−1 at room temperature. The electrochemical stability is at 5.0 V versus Li+/Li, making them suitable for practical applications in lithium cells. Cycling tests of Li/GPE/LiFePO4 cells showed the suitability of the electrospun membranes made of TPU/PVdF (80/20, w/w) for applications in lithium rechargeable batteries. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

19.
    
Dynamic viscoelastic properties of blends of poly(methyl methacrylate) (PMMA) and poly(styrene‐co‐acrylonitrile) (SAN) with various AN contents were measured to evaluate the influence of SAN composition, consequently χ parameter, upon the melt rheology. PMMA/SAN blends were miscible and exhibited a terminal flow region characterized by Newtonian flow, when the acrylonitrile (AN) content of SAN ranges from 10 to 27 wt %. Whereas, PMMA/SAN blends were immiscible and exhibited a long time relaxation, when the AN content in SAN is less than several wt % or greater than 30 wt %. Correspondingly, melt rheology of the blends was characterized by the plots of storage modulus G′ against loss modulus G″. Log G′ versus log G″ plots exhibited a straight line of slope 2 for the miscible blends, but did not show a straight line for the immiscible blends because of their long time relaxation mechanism. The plateau modulus, determined as the storage modulus G′ in the plateau zone at the frequency where tan δ is at maximum, varied linearly with the AN content of SAN irrespective of blend miscibility. This result indicates that the additivity rule holds well for the entanglement molecular weights in miscible PMMA/SAN blends. However, the entanglement molecular weights in immiscible blends should have “apparent” values, because the above method to determine the plateau modulus is not applicable for the immiscible blends. Effect of χ parameter on the plateau modulus of the miscible blends could not be found. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

20.
    
This work aims to study the effects of high loading (total 50 wt %) of inorganic calcite, zeolite particulates, and calcite/zeolite mixture with structurally different copolymer [CoPP; poly(propylene‐co‐ethylene)] and terpolymer [TerPP; poly(propylene‐co‐ethylene‐co‐1‐butene)] systems. Melt processing is the sole mode of mixing particulates with polymer for making master batch sample throughout this work. Mechanical properties, like the modulus and yield stress, continuously increase up to a critical zeolite ratio in calcite/zeolite mix and then decrease after exceeding the critical concentration. The impact strength of the composites is not improved by replacing the calcite portion from the mix with zeolite. Morphological study was carried out for matrix–filler dispersion observation. The complex melt viscosity, increased for both systems with increasing zeolite content, indicates extra processing difficulties because of high filler volume. Burning properties and thermal stability of CoPP and TerPP composites with 50 wt % filler systems were also studied. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号