首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
根据光伏电池的数学模型在MATLAB上建立了仿真模块,同时利用MATLAB里已有的异步风力发电机模型及蓄电池模型构建了风光互补的微电网系统。采用直流微电网与交流微电网混合的方式对直流负荷和交流负荷供电,在交流侧,仅采用一个独立的公共DC/AC变换器,在满足了负荷需求的同时节约了变换器资源。针对微电网的并网运行模式,建立了PQ控制模型;针对微电网的孤岛运行模式,采用了V/f控制方法,在电感电流内环电压外环的基础上,加入了负载扰动前馈补偿,同时,对逆变器连续状态空间表达式进行离散化,建立了控制模型。最后,通过对微电网并网运行和孤岛运行时的实例仿真,验证了控制方法的可行性及有效性。  相似文献   

2.
《电力与能源》2013,(4):332-337
城市微电网是智能电网的重要组成部分,对微电网中各个并网逆变器进行协调控制,保证系统稳定和高效运行,是微电网控制技术研究的重点。通过展示城市微电网拓扑结构示意图,对其构成及运行特性进行了分析。分析和研究了微电网处在不同运行状态下的控制策略。分析认为:对于风力发电、光伏发电等间歇性能源发电,可以采用PQ控制策略或者倒下垂控制策略,用以优化系统运行;V/f控制、下垂控制策略能够为分布式微电源在孤岛模式下提供电压和频率支撑,确保用电客户的供电需求;设计的并网同步控制器,能够减小分布式微电源从孤岛向并网模式切换时对配电网的冲击,从而提高了微电网系统的动态稳定性。在比对城市微电网典型控制策略优劣的基础上,提出了低压微电网控制策略的发展方向。  相似文献   

3.
微电网技术是21世纪电网发展的一个重要方向.这种全新的供配电形式,不仅更适合于新能源接入,而且人性化地赋予了电力用户更多的选择和管理空间.利用Matlab/Simulink软件模拟搭建了一个由风能和水能提供电源的微电网仿真平台,并对平台在遇到主网故障时的两种运行模式(关闭/开启孤岛运行)进行了仿真.结果表明,关闭孤岛运行模式时,微电网将在大电网故障时承受长时间及大幅值的功率与电压波动;开启孤岛运行模式时,微电网的功率与电压波动将有所减弱,能较好保证微电网的供电稳定和设备安全.研究表明,微电网的孤岛运行机制是有效且必要的.  相似文献   

4.
微电网系统并网与孤岛运行方式的平滑切换,是实现微电网经济、技术优势的关键,也是保证系统安全稳定运行、区域内重要负荷供电质量的重要手段。文章介绍了微电网系统中微电源变流器的控制方法与控制器结构,基于PSCAD/EMTDC仿真软件建立了含光储微电网模型,研究了微电网系统中变流器的PQ控制、V/f控制及两者间的平滑切换控制策略,对微电网的并离网转换、孤岛检测进行了仿真分析。仿真结果证明,所提出的微电网变流器控制策略有效实现了微电网的平滑切换。  相似文献   

5.
微电网线路阻抗比值较大,当微电网孤岛运行时,负荷频繁投切导致微电网电压、频率波动较大。文章对双馈感应风电机组与柴油机协调控制共同为微电网提供电压、频率支撑,提出了DFIG在微电网中的电压、频率协调控制策略。DFIG有功功率控制采用虚拟惯量控制与超速减载控制,并采用f-P下垂控制与柴油机配合对微电网频率进行调节。通过控制DFIG转子侧换流器的无功功率,并采用V-Q下垂控制与柴油机配合对微电网电压进行控制。最后在DIgSILENT中搭建了风光柴中压微电网模型,仿真结果验证了文章所提控制策略的有效性。  相似文献   

6.
微电网并网及孤岛模式运行必须满足电力系统安全运行的基本要求,合理的微电网系统接地方式及变压器接地网的设计是微电网安全稳定运行的重要保障,分析了微电网系统接地方式,采用接地分析软件CDEGS计算了微电网联网和孤岛模式运行时,不同位置故障时故障电流的分配情况,设计了微电网变压器的接地网,并仿真计算出接触电压和跨步电压的值,验证了所设计接地网的正确性,保证了微电网的安全运行。  相似文献   

7.
基于Matlab/Simulink的分布式电源控制方法   总被引:1,自引:0,他引:1  
分布式电源控制是实现微电网控制及可靠运行的前提。利用Matlab/Simulink仿真环境,根据PQ、V/f、Droop3种典型微电源控制方法的基本原理,建立了仿真模型。在分析原理的基础上,通过仿真算例,验证了各模型的正确性和有效性。仿真结果表明:PQ控制可实现微电源有功和无功功率的指定控制;V/f 控制实现了负荷功率变化时不同微电源间变化功率的共享,且在微电网孤岛运行时能为微电网系统提供电压和频率支撑;Droop控制模型能够实现功率共享并保证频率和电压的稳定。所建立的模型可以用于分布式电源并网或接入微电网运行控制问题的研究,具有一定的通用性和拓展性。  相似文献   

8.
针对在微电网孤岛模式下并联运行的分布式电源采用传统下垂控制策略时存在无功功率受并网线路阻抗影响较大、电压偏离额定值等问题,提出了微电网孤岛模式下无功分配及电压优化分层控制策略,将微电网优化控制过程分为两层:初级控制层针对分布式电源无功功率受并网线路阻抗影响较大问题,提出变系数法下垂控制策略,根据下垂特性和线路特性约束方程调整下垂系数,实现无功功率精确分配;二级控制层应用多智能体一致性算法维持微电网电压稳定。仿真模型使用PSCAD/EMTDC搭建,结果表明,分层优化策略使无功功率合理分配的同时提高了微电网电压水平。  相似文献   

9.
光伏作为微电网中的微电源有并网和孤岛两种典型的运行模式。并网时,公共连接点(PCC)处的电压和频率由大电网控制,光伏通常运行在最大功率捕获(MPPT)模式或定功率输出(PQ)模式,控制策略相对成熟;孤岛时,由于失去大电网支撑,如果仍然采用定功率输出,会导致微电网内电压和频率的崩溃。文章在分析了控制策略转变需求的基础上,提出了基于主从模式的下垂控制策略,可以使光伏在孤岛运行时,动态维持微电网内能量平衡,稳定母线电压,同时使得光伏之间及光伏和其他微电源之间有效配合、协调控制。  相似文献   

10.
分布式能源越来越受到人们的重视,但由于分布式能源发电的不稳定性特点,也加大了大电网的波动风险。微电网能够弥补分布式电源的缺点,减轻大量入网对电力系统的影响。由于微电网运行中,负载不断变化导致母线电压波动,因此维持母线电压稳定,将有利于微电网平稳运行。为提高微电网的经济性与可靠性,采用锂蓄电池-超级电容混合储能系统,并针对混合储能系统的直流微电网孤岛运行策略进行研究。根据微电网储能系统、锂蓄电池储能和超级电容器储能等基本原理,针对孤岛运行模式下微电网母线电压波动及储能系统运行性能下降的问题,设计了一种基于混合储能的直流微电网孤岛运行状态下的控制策略。用电压电流双闭环的储能系统控制方式,以DC-DC变换器进行功率分配,锂蓄电池对低频部分功率进行补偿,高频部分功率由超级电容器补偿。同时该混合储能系统能有效减少锂蓄电池充放电变化,避免过充过放现象的发生。通过Matlab/Simulink软件搭建仿真平台进行仿真模拟,证实了所设计的控制策略在稳定母线电压,避免蓄电池频繁充放电及过充过放现象中具有良好的优化作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号