首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Silicon‐containing polyimides were synthesized by solution polycondensation of bis(3,4‐dicarboxyphenyl)dimethylsilane dianhydride with 3,4‐oxydianiline and 4,4′‐oxydianiline, respectively. All the poly(amic acid) films could be obtained by solution‐casting from N,N‐dimethylacetamide solutions and thermally converted into transparent and tough polyimide films. The physical properties of thin films of those polyimides were compared by DSC, TGA, UV–visible spectroscopy, and dynamic mechanical analysis. The polyimide from bis(3,4‐dicarboxyphenyl)dimethylsilane dianhydride and 3,4‐oxydianiline exhibited superior energy‐damping characteristic, mechanical properties, and optical transparency, whereas that from bis(3,4‐dicarboxyphenyl)dimethylsilane dianhydride and 4,4′‐oxydianiline possessed higher glass‐transition temperature and thermal stability. Because of the unsymmetric structure of the polyimide from bis(3,4‐dicarboxyphenyl)dimethylsilane dianhydride and 3,4‐oxydianiline, its increasing rate of linear coefficient of thermal expansion with temperature was quicker than that of the polyimide from bis(3,4‐dicarboxyphenyl)dimethylsilane dianhydride and 4,4′‐oxydianiline. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 2363–2367, 2004  相似文献   

2.
A series of co‐polyimide fibers were prepared by thermal imidization of copolyamic acids derived from 3,3′,4,4′‐biphenyltertracarboxylic dianhydride (BPDA) and pyromellitic dianhydride (PMDA) in various molar ratios with 2‐(4‐aminophenyl)?5‐aminobenzimidazole (BIA). The dynamic mechanical behaviors of these polyimide (PI) fibers revealed that the glass transition temperature (Tg) was significantly improved upon increasing PMDA content. Heat‐drawing process led to dramatic change on the glass transition behavior of BPDA/BIA system, but had a small impact on BPDA/PMDA/BIA co‐polyimide fibers. This difference for PI fibers is attributed to the different degree of ordered structure of the fibers affected by heat‐drawing. The incorporation of PMDA obviously improved the dimensional stability against high temperature, due to the restricted movement of polymer chains. In addition, the obtained fibers show excellent mechanical and thermal properties because of the strong hydrogen bonding due to the incorporation of benzimidazole moieties. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41474.  相似文献   

3.
A series of uncontrolled molecular weight homopolyimides and copolyimides based on 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (s‐BPDA)/4,4′‐oxydianiline (4,4′‐ODA)/1,3‐bis(4‐aminophenoxy)benzene (TPER) were synthesized. All the polyimides displayed excellent thermal stability and mechanical properties, as evidenced by dynamic thermogravimetric analysis and tensile properties testing. A singular glass transition temperature (Tg) was found for each composite from either differential scanning calorimetry (DSC) or dynamic mechanical analysis (DMA), but the values determined from tan δ of DMA were much different from those determined from DSC and storage modulus (E′) of DMA. The Fox equation was used to estimate the random Tg values. Some composites exhibited re‐crystallization after quenching from the melt; upon heating, multi‐melting behavior was observed after isothermal crystallization at different temperatures. The equilibrium melting temperature was estimated using the Hoffman‐Weeks method. Additionally, DMA was conducted to obtain E′ and tan δ. Optical properties were strongly dependent on the monomer composition as evidenced by UV‐visible spectra. X‐ray diffraction was used to interpret the crystal structure. All the results indicated that composites with TPER composition ≥ 70% were dominated by the TPER/s‐BPDA polyimide phase, and ≤40% by the 4,4′‐ODA/s‐BPDA polyimide phase. When the ratio between the two diamines was close to 1:1, the properties of the copolyimides were very irregular, which means a complicated internal structure. Copyright © 2011 Society of Chemical Industry  相似文献   

4.
A series of copolyimide/SiO2 hollow sphere thin films were prepared successfully based on bis[3,5‐dimethyl‐4‐(4‐aminophenoxy)phenyl]methane and 9,9‐bis(4‐(4‐aminophenoxy)phenyl)fluorene (molar ratio = 3 : 1) as diamine, and 4,4′‐(4,4′‐isopropylidenediphenoxy)bis(phthalic anhydride) as dianhydride, with different wt % SiO2 hollow sphere powder with particle size 500 nm. Some films possessed excellent dielectric properties, with ultralow dielectric constants of 1.8 at 1 MHz. The structures and properties of the thin films were measured with Fourier transform infrared spectra, scanning electron microscope, thermogravimetric analysis, and dynamic mechanical thermal analysis. The polyimide (PI) films exhibited glass‐transition temperatures in the range of 209– 273°C and possessed initial thermal decomposition temperature reaching up to 413–477°C in air and 418–472°C in nitrogen. Meanwhile, the composite films were also exhibited good mechanical properties. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

5.
A series of co‐polyimide/attapulgite (co‐PI/AT) nanocomposites have been successfully fabricated from anhydride‐terminated polyimide (PI) and γ‐aminopropyltriethoxysilane (APTES)‐modified fibrous attapulgite (AT). Co‐PI was prepared from 4,4′‐diaminodiphenyl ether (ODA), 4,4′‐oxydiphthalic anhydride (ODPA), and 2,2‐bis[4‐(3,4‐dicarboxyphenoxy)phenyl]propane dianhydride (BPADA) by using the method of chemical imidization. Different amount of AT (0, 1, 3, 5, 7 wt%) were introduced into co‐PI via strong covalent interactions between terminal anhydride and amino groups. The properties of co‐PI/AT nanocomposites such as morphology, thermal stability, mechanical properties, and UV transparency were investigated to illustrate the contribution of the introduction of AT into the PI matrix. FTIR spectra and SEM images revealed that network structures between co‐PI and AT are formed, which endowed the nanocomposites with outstanding thermal and mechanical properties. The co‐PI/AT nanocomposites exhibited excellent thermal and thermo‐oxidative stabilities with the onset decomposition temperature and 10% weight loss temperature increasing to the ranges of 502–510°C and 555–562°C from 480°C to 526°C for the pristine co‐PI, respectively. The glass transition temperatures of these co‐PI/AT nanocomposites increased to the range of 231–238°C from 222°C for pure co‐PI. The co‐PI/AT nanocomposites films were found to be transparent, flexible, and tough. By incorporating 5 wt% AT into the co‐PI matrix, the tensile strength, elongation at break, and Young's modulus of the co‐PI/AT nanocomposites reached 110.7 MPa, 14.5%, and 1.2 GPa, respectively, which are 50%, 120%, and 80% increased compared with the values of pristine PI. POLYM. COMPOS., 35:86–96, 2014. © 2013 Society of Plastics Engineers  相似文献   

6.
Silica‐containing polyimide films were prepared by sol‐gel technique using a poly(amic acid) and tetraethoxysilane. The poly(amic acid) was synthesized by solution polycondensation reaction of 4,4′‐oxydiphthalic anhydride with 2,6‐bis(3‐aminophenoxy)benzene and an aminosilane coupling agent, 3‐aminopropyltriethoxysilane. The properties of these films, such as water vapors sorption capacity, dynamic contact angles and contact angle hysteresis, thermal, and electrical behavior have been evaluated with respect to their structure. The polymer films exhibited good thermal stability having the initial decomposition temperature above 450°C, glass transition temperature in the range of 223?228°C, and low‐dielectric constant in the range of 2.64?3.16. Two subglass transitions, γ and β, were evidenced by dynamic mechanical analysis and dielectric spectroscopy. The surface morphology and the roughness were investigated by atomic force microscopy and scanning electron microscopy. POLYM. ENG. SCI., 2010. © 2009 Society of Plastics Engineers  相似文献   

7.
Two series of aromatic polyimides containing various linkage groups based on 2,7‐bis(4‐aminophenoxy)naphthalene or 3,3′‐dimethyl‐4,4′‐diaminodiphenylmethane and different aromatic dianhydrides, namely 4,4′‐(4,4′‐isopropylidenediphenoxy)bis(phthalic anhydride), 4,4′‐(hexafluoroisopropylidene)bis(phthalic anhydride), 3,3′,4,4′ benzophenonetetracarboxylic dianhydride, 9,9‐bis[4‐(3,4‐dicarboxyphenoxy)phenyl]fluorene dianhydride and 4,4′‐(4,4′‐hexafluoroisopropylidenediphenoxy)bis(phthalic anhydride), were synthesized and compared with regard to their thermal, mechanical and gas permeation properties. All these polymers showed high thermal stability with initial decomposition temperature in the range 475–525 °C and glass transition temperature between 208 and 286 °C. Also, the polymer films presented good mechanical characteristics with tensile strength in the range 60–91 MPa and storage modulus in the range 1700–2375 MPa. The macromolecular chain packing induced by dianhydride and diamine segments was investigated by examining gas permeation through the polymer films. The relationships between chain mobility and interchain distance and the obtained values for gas permeability are discussed. © 2014 Society of Chemical Industry  相似文献   

8.
Aromatic polyimides are high‐performance polymers used in applications demanding service at enhanced temperature while maintaining their structural integrity and excellent combination of chemical, physical and mechanical properties. The incorporation of various metallic additives into a polyimide matrix improves its properties, leading to materials required by specific applications. Hybrid polyimide films containing barium and titanium oxides having thicknesses in the range of tens of micrometres were prepared. These films were obtained using the sol–gel technique starting from a poly(amic acid) and a soluble precursor of metal oxides. They exhibited good thermal stability having an initial decomposition temperature above 460 °C, and a glass transition temperature in the range 217–238 °C. Two subglass transitions, γ and β, were evident from dynamic mechanical analysis and dielectric spectroscopy. A study of the thermal and electrical behaviour of some hybrid polyimide films containing barium and titanium oxides is presented. On increasing the concentration of metal oxides, an increase of dielectric constant and a decrease of thermal stability of the hybrid films were observed. The presence of metal oxides shifted the glass transition temperature and the temperature of the β transition to higher values. Copyright © 2009 Society of Chemical Industry  相似文献   

9.
Metal ions have been incorporated into linear polyimide films in order to improve the potential of these materials for applications in space. Various metals such as Al, Pd, Ag, Au, and Sn in a variety of chemical states were added to a polyamic acid prepared from 3,3′, 4,4′-benzophenone tetracarboxylic acid dianhydride and 4,4′-oxydianiline. Films of the metal ion-filled polyamic acids were prepared and cured to the corresponding polymides by heating at 300°C in air. The cured films were characterized for such properties as glass transition temperature, electrical conductivity, and thermal stability. Modulii and tensile strengths of the metal-containing polymide films were obtained at both ambient and elevated temperatures. Comparison of the physical and mechanical properties of these polyimide films as a function of metal additive is made.  相似文献   

10.
Preparation and characterization of blends and copolymers of a fluorinated polyimide with network constituents is reported. 4,4′‐Hexafluoroisopropylidene diphthalic anhydride and 4,4′‐diaminodiphenyl ether (6FDA–DDE) polyimide were used as the linear hosts and mellitic acid hexamethyl ester ‐ 4,4′‐diaminodiphenyl ether (MAHE–DDE) was employed as the network constituent for the blend and copolymer. Cast films of the polyimides were characterized by FTIR, XPS, DMA, and TGA. The multifunctional nature of MAHE facilitated crosslinking among the constituents. Both blends and copolymers showed significant improvement in the storage modulus and glass transition temperature relative to that observed for the 6FDA homopolymer. The occurrence of a single glass transition temperature for the blends suggests that they were at least partially miscible. Presence of low molecular weight species in the copolyimides, combined with steric hindrance to crosslinking, may have resulted in the existence of an optimum in the amount of the network components for improving the mechanical properties. Inclusion of network components is presented as a facile method for improving the desirable properties of polyimide. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 3000–3008, 2006  相似文献   

11.
Polyimide microspheres were prepared via non‐aqueous emulsion polymerization by using pyromellitic dianhydride (PMDA) as anhydride monomer and 2,2‐bis(4‐(4‐aminophenoxy)phenyl)propane as amine monomer. The polyimide microspheres were well characterized by Fourier transform infrared spectroscopy, SEM and laser particle size analyzer. They were spherical in shape and monodisperse and their size was 31–33 μm. Polyimide mixtures formed by polyimide microspheres as fillers and polyimide composed of pyromellitic and dianhydride 4,4′‐oxydianiline (ODA) as matrix were investigated with regard to thermal properties, dielectric properties and mechanical properties. With 10%–50% polyimide microspheres in the polyimide mixtures, the dielectric constants were 2.26–2.48 (1 MHz) and the loss tangents were 0.00663–0.00857 (1 MHz), which were both significantly lower than the values for ODA‐PMDA polyimide. The decomposition temperature and glass transition temperature were above 440 and 290 °C. The polyimide mixtures possessed excellent thermal resistance. When the percentage of polyimide microsphere addition was 30%, the polyimide mixtures had the largest tensile strength (128.50 MPa) and elongation at break (9.01%). These results indicate that the polyimide microspheres were used as both low dielectric fillers and reinforcing fillers. © 2020 Society of Chemical Industry  相似文献   

12.
Glass fiber/polyimide aerogel composites are prepared by adding glass fiber mat to a polyimide sol derived from diamine, 4,4′‐oxydianiline, p‐phenylene diamine, and dianhydride, 3,3′,4,4′‐biphenyltetracarboxylic dianhydride. The fiber felt acts as a skeleton for support and shaping, reduces aerogel shrinkage during the preparation process, and improves the mechanical strength and thermal stability of the composite materials. These composites possess a mesoporous structure with densities as low as 0.143–0.177 g cm?3, with the glass fiber functioning to improve the overall mechanical properties of the polyimide aerogel, which results in its Young's modulus increasing from 42.7 to 113.5 MPa. These composites are found to retain their structure after heating at 500 °C, in contrast to pure aerogels which decompose into shrunken ball‐like structures. These composites maintain their thermal stability in air and N2 atmospheres, exhibiting a low thermal conductivity range of 0.023 to 0.029 W m?1 K?1 at room temperature and 0.057to 0.082 W m?1 K?1 at 500 °C. The high mechanical strengths, excellent thermal stabilities, and low thermal conductivities of these aerogel composites should ensure that they are potentially useful materials for insulation applications at high temperature.  相似文献   

13.
A semicrystalline copolyimide derived from 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (s‐BPDA), 1,3‐bis‐(4‐aminophenoxy)benzene (TPER), and 4,4′‐oxydianiline (4,4′‐ODA), end capped with phthalic anhydride (PA), was synthesized. Glass fiber reinforced composite was also prepared by impregnating powdery glass fiber with poly(amic acid) followed by solution imidization techniques. This copolyimide displayed a glass transition temperature of 202°C and a melting temperature of 373°C by differential scanning colorimeter (DSC). Crystallization and melting behaviors were investigated under nonisothermal and isothermal crystallization conditions. Double exothermic peaks were found by DSC when the copolyimide was cooled from the melt and multiple melting behaviors can be observed after the coployimide had been isothermally crystallized at different temperatures. Mechanical properties were investigated by dynamical mechanical analysis (DMA) and tensile experiments. The samples were cured at different temperatures and then tested at different temperatures. Results indicated that the copolyimide and the composite showed excellent mechanical properties. Additionally, this copolyimide also showed lower melt viscosity by rheological analysis. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40345.  相似文献   

14.
Two series of melt‐processable polyimides were prepared from 4,4′‐bis(3‐amino‐5‐trifluoromethylphenoxy)biphenyl (m‐6FBAB) and 4,4′‐bis(4‐amino‐5‐trifluoromethylphenoxy) biphenyl (p‐6FBAB) with various aromatic dianhydrides. The effects of the chemical structures of the polyimides on their properties, especially the melt processability and organic solubility, were investigated. The experimental results demonstrate that some of the fluorinated aromatic polyimides showed good melt processability at elevated temperatures (250–360°C) with relatively low melt viscosities and could be melt‐molded to produce strong and tough polyimide sheets. Meanwhile, the polyimides showed excellent organic solubility in both polar aprotic solvents and common solvents to give stable polyimide solutions with high polymer concentrations and relatively low viscosities. Thus, we prepared high‐quality polyimide films by casting the polyimide solutions on glass plates followed by baking at relatively low temperatures. The polyimides derived from m‐6FBAB showed better melt processability and solubility than the p‐6FBAB based polymers. The melt‐processable polyimides showed a good combination of thermal stability and mechanical properties, with decomposition temperatures of 547–597°C, glass‐transition temperatures in the range 205–264°C, tensile strengths of 81.3–104.9 MPa, and elongations at break as high as 19.6%. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

15.
We report a method for making novel, lightweight (ρ = 0.3–1.1 kg/dm3) polymer composites based on high-temperature foam polyimide binder, carbon fibers, and organic fibers. The density and mechanical properties of the foam composite can be varied over a relatively wide range, depending on the volume contents of the fiber and air pores. The resin's high glass transition temperature of 260°C, coupled with the high thermal stability of carbon or polyimide fibers, contributes to its excellent retention of mechanical properties at elevated temperatures. The temperature at the beginning of weight loss is not lower than 570°C and depends on the kind of fiber felt. The combination of excellent thermal and specific mechanical properties of foam composites together with exceptional thermal stability and processability on conventional molding equipment can provide unusual performance for the new design of advanced materials and structures.  相似文献   

16.
A polyfluorinated aromatic diamine, 3,3′, 5,5′‐tetrafluoro‐4,4′‐diaminodiphenylmethane (TFDAM), was synthesized and characterized. A series of polyimides, PI‐1–PI‐4, were prepared by reacting the diamine with four aromatic dianhydrides via a one‐step high‐temperature polycondensation procedure. The obtained polyimide resin had moderate inherent viscosity (0.56–0.68 dL/g) and excellent solubility in common organic solvents. The polyimide films exhibited good thermal stability, with an initial thermal decomposition temperature of 555°C–621°C, a 10% weight loss temperature of 560°C–636°C, and a glass‐transition temperature of 280°C–326°C. Flexible and tough polyimide films showed good tensile properties, with tensile strength of 121–138 MPa, elongation at break of 9%–12%, and tensile modulus of 2.2–2.9 GPa. The polyimide films were good dielectric materials, and surface and volume resistance were on the order of a magnitude of 1014 and 1015 Ω cm, respectively. The dielectric constant of the films was below 3.0 at 1 MHz. The polyfluorinated films showed good transparency in the visible‐light region, with a cutoff wavelength as low as 302 nm and transmittance higher than 70% at 450 nm. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1442–1449, 2007  相似文献   

17.
A series of novel quartz‐fiber‐cloth‐reinforced polyimide substrates with low dielectric constants were successfully prepared. For this purpose, the A‐stage polyimide solution was first synthesized via a polymerization‐of‐monomer‐reactant procedure with 2,2′‐bis(trifluoromethyl)benzidine and 3,3′,4,4′‐oxydiphthalic anhydride as the monomers, and cis?5‐norbornene‐endo‐2,3‐dicarboxylic anhydride as the endcap. Then, an A‐stage polyimide solution (TOPI) was impregnated with quartz‐fiber cloth (QF) to afford the prepregs, which were thermally molded into the final substrate composites. The influence of the curing temperature and the resin content on the mechanical properties of the composite were examined. The composites exhibited a high glass‐transition temperature over 360°C, a low and steady dielectric constant below 3.2 at a test frequency of 1–12 GHz, and a volume resistance over 1.8 × 1017 Ω cm. Meanwhile, they also showed a high mechanical strength with flexural and impact strengths in ranges 845–881 MPa and 141–155 KJ/m2, respectively. The excellent mechanical and thermal properties and good dielectric properties indicated that they are good candidates for integrated circuit packaging substrates. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42358.  相似文献   

18.
The copolyimide (co‐PI) fibers with outstanding mechanical properties were prepared by a two‐step wet‐spinning method, derived from the design of combining 4,4′‐oxydianiline (ODA) with the rigid 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (BPDA)/p‐phenylenediamine (p‐PDA) backbone. The mechanical properties of PI fibers were drastically improved with the optimum tensile strength of 2.53 GPa at a p‐PDA/ODA molar ratio of 5/5, which was approximately 3.7 times the tensile strength of BPDA/p‐PDA PI fibers. Two‐dimensional wide‐angle X‐ray diffraction indicated that the highly oriented structures were formed in the fibers. Two‐dimensional small‐angle X‐ray scattering revealed the existence of the needle‐shaped microvoids aligned parallel to the fiber axis, and the introduction of ODA led to the reduction in the size of the microvoids. As a result, the significantly improved mechanical properties of PI fibers were mainly attributed to the gradually formed homogeneous structures. The co‐PI fibers also exhibited excellent thermal stabilities of up to 563°C in nitrogen and 536°C in air for a 5% weight loss and glass transition temperatures above 279°C. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42474.  相似文献   

19.
Two series of heterocyclic aromatic polymers were synthesized from 4,4′‐(4,4′‐isopropylidenediphenoxy)bis(phthaltic anhydride) and 2,2′‐bis(3,4‐dicarboxyphenyl)hexafluoropropane dianhydride by two‐step method. The inherent viscosities were in the range of 24–45 cm3/g. The effects of the rigid benzoxazole group in the backbone of copolymer on the thermal, mechanical, and physical properties were investigated. These polymers exhibit good thermal stability. The temperatures of 5% weight loss (T5) of these polymers are in the range of 403–530°C in air and 425–539°C in nitrogen. The chard yields of these polymers are in the range of 15–24% in air and 54–61% in nitrogen. These polymers also have high glass‐transition temperatures and a low coefficient of thermal expansion and good mechanical properties. The poly(benzoxazol imide) has a higher tensile strength and modulus than those of neat polyimide. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

20.
Polyimide has excellent heat resistance, dielectric properties, and mechanical properties, and has a wide range of applications in aerospace, electronic packaging, and insulating materials. However, traditional polyimide is difficult to melt and dissolve, and its processing is difficult, which has become an important reason limiting its practical application. Therefore, the development of high temperature-resistant thermoplastic polyimide has become a research hotspot. To prepare high temperature-resistant thermoplastic polyimide materials, a series of thermoplastic polyimides was successfully prepared using 3,3′,4,4′-benzophenone tetracarboxylic dianhydride, 3,3′-diaminodiphenylsulfone, 2,3′,3,4′-benzophenone tetracarboxylic dianhydride, 9,9-bis(4-aminophenyl)fluorene, and 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane via a two-step method. The effects of non-coplanar structure and bulky groups on the solubility, processability, and thermal properties of polyimide were studied. The structure, heat resistance and thermoplasticity of polyimide were characterized via various methods. The results show that the glass transition temperature of the prepared thermoplastic polyimide is between 292 and 302°C, and has excellent thermal resistance. The processing viscosity of polyimides is as low as 9210 Pa.s, and it has a certain degree of processing properties. It may be designed to be used in high temperature-resistant hot melt adhesives for structural components, high temperature-resistant melt processing resins, or thermoplastic composite materials used in the field of aerospace in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号