首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了研究F-T柴油/聚甲氧基二甲醚(PODE)混合燃料的燃烧和排放特性,以煤基燃料F-T柴油作为基础燃料,添加体积分数为5%和15%的PODE,从而配制成F-T柴油/PODE混合燃料,再以发动机台架为基础,在四缸高压共轨柴油机上进行试验研究。试验结果表明:与0#柴油相比,F-T柴油和混合燃料的缸内放热率峰值、压力升高率、缸内压力峰值和温度都有所降低,并且对应的峰值相位均提前;在转速为2 000 r/min的工况下,相比于0#柴油,燃用F-T柴油和混合燃料FP05,FP15时,NOx的排放量略有升高,CO和碳烟的排放量均显著降低(在低负荷时尤为明显),其中,CO的平均排放量分别降低了21.5%,41.7%和48.0%,碳烟的平均排放量分别降低了54.6%,74.7%和90.1%,并且随着混合燃料中PODE掺混比例的增加,CO和碳烟排放量的降低幅度增大。  相似文献   

2.
在F-T柴油中添加不同比例的丁醇、生物柴油燃料,并与0#柴油做了燃烧及排放特性的对比研究。研究结果表明:混合燃料的预混合燃烧期、扩散燃烧期、缸压峰值与放热率峰值均介于0#柴油与F-T柴油之间;相对于0#柴油,混合燃料燃烧始点提前,CA50增加,燃烧放热中心向后推迟,燃烧放热率第一峰值降低;所在相位提前,预混合燃烧放热量降低,有利于降低燃烧过程的最高温度,实现低温燃烧,第二峰值升高,扩散燃烧所占比重增加;在转速为2 000 r/min时,混合燃料(N10,N20和N10B10)的NOx排放量较0#柴油分别降低了23.40%,26.95%和23.25%,其中主要是NO的降低,NO2的排放量因为低温燃烧反而略有上升;外特性下,碳烟排放量较0#柴油分别平均降低71.47%,77.16%,68.80%。  相似文献   

3.
将生物柴油和F-T柴油(F-T diesel)进行掺混,并将其混合燃料应用于4100QBZL柴油机上.在未对原机做任何改动的情况下,研究了该机燃用不同体积配比混合燃料时的燃烧特性及NOx和碳烟排放性能.研究表明,与0#柴油相比,该机的预混燃烧放热峰值降低、扩散燃烧放热峰值升高、燃烧更柔和;NOx排放随着生物柴油掺混比例的增大而升高;碳烟排放显著下降,较0#柴油的降低幅度高达37%;低比例的混合燃料对NOx排放和碳烟排放的trade-off关系有明显改善.生物柴油与F-T柴油混合燃料宜在较低的生物柴油掺混比例范围内使用.  相似文献   

4.
在一台共轨柴油机上,通过向柴油分别掺混30%体积比的2,5-二甲基呋喃(DMF)和汽油,研究了含氧燃料和低十六烷值燃料对柴油机燃烧过程和排放特性的影响机理。研究结果表明:D30的滞燃期最长,G30次之,纯柴油最短,表明十六烷值是影响着火滞燃期的关键因素。混合燃料的挥发性、硫和芳香烃含量对碳烟排放影响较小,扩展的着火延迟期和增加的燃料氧(原子氧)是降低低温燃烧过程中碳烟生成的两个关键因素。柴油掺混DMF,通过采用中等强度EGR率(低于40%),能显著扩展低排放区域(NOx排放0.4g/(kW·h),碳烟排放0.01g/(kW·h))并保持较好的燃油经济性。相比汽油/柴油混合燃料,DMF/柴油混合燃料对碳烟的降低效果更显著,表明DMF作为一种低十六烷值的新型生物质含氧燃料,其与柴油混合后的理化特性更适合于柴油机低温燃烧的排放控制。多次喷射试验表明:在柴油中掺混DMF或汽油,喷油控制策略对碳烟生成影响减小。综合来看,石化柴油与低十六烷值含氧燃料混合,通过燃料改性与中等强度EGR率(低于40%)耦合并合理控制CA50,是在简化喷油控制策略下实现现代柴油机高效、清洁低温燃烧的一项有效技术途径。  相似文献   

5.
通过在R4105T柴油机上进行对比试验,分析了0#柴油/生物柴油、乙醇/生物柴油混合燃料以不同比例掺混时对柴油机动力性、经济性及碳烟排放特性的影响。研究结果表明:柴油机使用0#柴油/生物柴油混合燃料时动力性、碳烟排放量均有所下降,油耗率稍有上升;使用乙醇/生物柴油混合燃料时,碳烟排放量低于生物柴油,动力性、经济性随乙醇含量的不同而呈现不同的变化趋势。  相似文献   

6.
大豆生物柴油混合燃料性能试验研究   总被引:1,自引:0,他引:1  
通过在R4105T柴油机上进行对比试验,分析了0#柴油/生物柴油、乙醇/生物柴油混合燃料以不同比例掺混时对柴油机动力性、经济性及碳烟排放特性的影响.研究结果表明:柴油机使用0#柴油/生物柴油混合燃料时动力性、碳烟排放量均有所下降,油耗率稍有上升;使用乙醇/生物柴油混合燃料时,碳烟排放量低于生物柴油,动力性、经济性随乙醇含量的不同而呈现不同的变化趋势.  相似文献   

7.
针对柴油机的排放污染问题,分析比较了生物柴油和0#石化柴油的理化性质,配制了B20,B50,B1003种混合燃料和0#柴油分别在495Q3柴油机上进行了排放试验.结果显示燃用3种混合燃料时NOx的排放量与0#柴油相比均有升高,但烟度、HC和CO的排放量低于0#柴油.  相似文献   

8.
以正庚烷-癸酸甲酯(MD)-癸烯酸甲酯(MD9D)简化机理为基础,构建了生物柴油(大豆生物柴油SME)-柴油混合燃料燃烧化学反应动力学机理。在单次喷射和主-后喷射两种喷油方式下,将大豆生物柴油、纯柴油以30∶70和70∶30体积比掺混,将该化学反应机理与CFD计算软件耦合,研究后喷策略下生物柴油-柴油混合燃料的低温燃烧特性和排放特性。数值计算结果表明:随着SME掺混比例增加,缸内燃烧温度峰值逐渐降低,缸内燃烧放热主要受OH自由基与燃料的脱氢反应速率影响,反应速率随温度升高而增大;NO_x排放随掺混比例增加而逐渐降低,NO_x排放主要受温度影响;单次喷射下,掺混比例越高,碳烟排放量越低;后喷射下,碳烟生成量受C_2H_2影响,随掺混比例增加而逐渐降低,OH在碳烟氧化过程中起主要作用,碳烟最终排放量受掺混比例影响不大。  相似文献   

9.
为了研究F-T柴油与乙醇/正丁醇形成的混合燃料的排放特性。文章根据混合燃料中氧质量分数相同的原则,配制了4种不同体积比的混合燃料,并按照八工况法进行试验。试验结果表明:与F-T柴油相比,燃用添加了乙醇/正丁醇的混合燃料能有效降低尾气烟度和NO_x的排放量,且尾气烟度与NO_x排放量的trade-off关系得到改善,但是,HC的排放量略有增加;中低负荷时,混合燃料的CO排放量均高于F-T柴油,高负荷时,混合燃料的CO排放量均低于F-T柴油;对比掺混不同醇类的混合燃料,乙醇/F-T柴油混合燃料降低NO_x和碳烟排放量的效果更明显。  相似文献   

10.
本文在高原环境(81kpa)下,对4100QBZL柴油机燃用不同配比生物柴油混合燃料后NOx与碳烟的排放进行了试验研究。试验结果表明:与柴油相比,纯生物柴油的NOx排放上升了0%~0.22%,而掺混比为30%以内的混合燃料的NOx排放则下降了2.9%~4.5%;碳烟的排放明显降低,且随掺混比的增加而降低,纯生物柴油的碳烟排放下降了33%~53%,掺混比为30%以内的混合燃料的碳烟排放下降了10%~31%。综合考虑,燃用掺混比为30%以内的生物柴油混合燃料,能同时有效地降低NOx与碳烟的排放。  相似文献   

11.
《Applied Thermal Engineering》2007,27(2-3):604-610
In view of the possible occurrence of unlike drop collisions in a diesel spray due to the increasing application of alcoholic fuels as supplementary fuels in diesel engines, collisions of a diesel drop with either a diesel drop or an ethanol drop were studied. Diesel drop collision results do not display appreciable difference, within experimental errors, from those of tetradecane drops except for very small Weber numbers. The collision of an ethanol drop with a diesel drop, when compared to binary diesel drop collisions, exhibits higher tendency towards reflex separation for near head-on collisions and lower tendency towards stretching separation for medium to high impact parameter collisions. These distinctions come from the spreading of ethanol over the diesel drop due to their difference in surface tension.  相似文献   

12.
柴油机压力波检测仪在内燃机车上的应用   总被引:2,自引:0,他引:2  
简述了压力波检测仪在机车检修中的具体作用,详尽分析了对典型故障的处理办法,提出仪器在实际运用过程中应该注意的几个具体问题.  相似文献   

13.
Efforts are under way in many countries, including India, to search for suitable alternative diesel fuels that are environment friendly. The need to search for these fuels arises mainly from the standpoint of preserving the global environment and the concern about long-term supplies of conventional hydrocarbon-based diesel fuels. Among the different possible sources, diesel fuels derived from triglycerides (vegetable oils/animal fats) present a promising alternative to substitute diesel fuels. Although triglycerides can fuel diesel engines, their high viscosities, low volatilities and poor cold flow properties have led to the investigation of various derivatives. Fatty acid methyl esters, known as biodiesel, derived from triglycerides by transesterification with methanol have received the most attention. The main advantages of using biodiesel are its renewability, better-quality exhaust gas emissions, its biodegradability and given that all the organic carbon present is photosynthetic in origin, it does not contribute to a rise in the level of carbon dioxide in the atmosphere and consequently to the greenhouse effect.  相似文献   

14.
Fischer-Tropsch (F-T) diesel fuel is characterized by a high cetane number, a near-zero sulphur content and a very low aromatic level. On the basis of the recorded incylinder pressures and injector needle lifts, the combustion characteristics of an unmodified single-cylinder direct-injection diesel engine operating on F-T diesel fuel are analyzed and compared with those of conventional diesel fuel operation. The results show that F-T diesel fuel exhibits a slightly longer injection delay and injection duration, an average of 18.7% shorter ignition delay, and a comparable total combustion duration when compared to those of conventional diesel fuel. Meanwhile, F-T diesel fuel displays an average of 26.8% lower peak value of premixed burning rate and a higher peak value of diffusive burning rate. In addition, the F-T diesel engine has a slightly lower peak combustion pressure, a far lower rate of pressure rise, and a lower mechanical load and combustion noise than the conventional diesel engine. The brake specific fuel consumption is lower and the effective thermal efficiency is higher for F-T diesel fuel operation. Translated from Journal of Xi’an Jiaotong University, 2006, 40(1): 5–9 [译自: 西安交通大学学报]  相似文献   

15.
GKD2型调车内燃机车是为满足工矿企业及铁路部门对调车内燃机车的需求而研制的,是东风11型、东风8B型内燃机车的系列产品.本文介绍了该机车的总体布置、主要技术参数、主要部件的特点和预期的牵引性能.  相似文献   

16.
Hydrogen assisted diesel combustion was investigated on a DDC/VM Motori 2.5L, 4-cylinder, turbocharged, common rail, direct injection light-duty diesel engine, with a focus on exhaust emissions. Hydrogen was substituted for diesel fuel on an energy basis of 0%, 2.5%, 5%, 7.5%, 10% and 15% by aspiration of hydrogen into the engine's intake air. Four speed and load conditions were investigated (1800 rpm at 25% and 75% of maximum output and 3600 rpm at 25% and 75% of maximum output). A significant retarding of injection timing by the engine's electronic control unit (ECU) was observed during the increased aspiration of hydrogen. The retarding of injection timing resulted in significant NOX emission reductions, however, the same emission reductions were achieved without aspirated hydrogen by manually retarding the injection timing. Subsequently, hydrogen assisted diesel combustion was examined, with the pilot and main injection timings locked, to study the effects caused directly by hydrogen addition. Hydrogen assisted diesel combustion resulted in a modest increase of NOX emissions and a shift in NO/NO2 ratio in which NO emissions decreased and NO2 emissions increased, with NO2 becoming the dominant NOX component in some combustion modes. Computational fluid dynamics analysis (CFD) of the hydrogen assisted diesel combustion process captured this trend and reproduced the experimentally observed trends of hydrogen's effect on the composition of NOX for some operating conditions. A model that explicitly accounts for turbulence–chemistry interactions using a transported probability density function (PDF) method was better able to reproduce the experimental trends, compared to a model that ignores the influence of turbulent fluctuations on mean chemical production rates, although the importance of the fluctuations is not as strong as has been reported in some other recent modeling studies. The CFD results confirm that temperature changes alone are not sufficient to explain the observed reduction in NO and increase in NO2 with increasing H2. The CFD results are consistent with the hypothesis that in-cylinder HO2 levels increase with increasing hydrogen, and that the increase in HO2 enhances the conversion of NO to NO2. Increased aspiration of hydrogen resulted in PM, and HC emissions which were combustion mode dependent. Predominantly, CO and CO2 decreased with the increase of hydrogen. The aspiration of hydrogen into the engine modestly decreased fuel economy due to reduced volumetric efficiency from the displacement of air in the cylinder by hydrogen.  相似文献   

17.
研究了一种燃油催化剂再生微粒捕集器的微粒捕集与再生特性。通过柴油机台架试验分析了该微粒捕集器对国产CA6DL1-28型柴油机的动力性、燃油经济性和排放性能的影响。试验结果表明,该微粒捕集器具有同类其他产品无法比拟的良好特性,同时也为其对其他国产发动机的适应性研究提供了依据。  相似文献   

18.
For partial substitution of conventional diesel fuel with liquified-petroleum gas (LPG) fuel, in an indirect-injection, (IDI) diesel engine, the so-called ‘mixed diesel gas’ approach has been applied. For this purpose, a carburetted LPG fuel system has been designed and fitted on the inlet manifold of the engine. Extensive performance tests have been carried out at full load conditions of both the pure diesel and diesel-LPG engines. The results show that, at the rated speed, and at equal power of both engines, increasing the LPG proportion in the dual fuel decreases specific fuel consumption, exhaust gas temperature and black smoke but increase pollutants such as UHC and CO, cylinder peak pressure and the rate of pressure rise.  相似文献   

19.
The aim of this study is to investigate the suitability of isobutanol–diesel fuel blends as an alternative fuel for the diesel engine, and experimentally determine their effects on the engine performance and exhaust emissions, namely break power, break specific fuel consumption (BSFC), break thermal efficiency (BTE) and emissions of CO, HC and NOx. For this purpose, four different isobutanol–diesel fuel blends containing 5, 10, 15 and 20% isobutanol were prepared in volume basis and tested in a naturally aspirated four stroke direct injection diesel engine at full -load conditions at the speeds between 1200 and 2800 rpm with intervals of 200 rpm. The results obtained with the blends were compared to those with the diesel fuel as baseline. The test results indicate that the break power slightly decreases with the blends containing up to 10% isobutanol, whereas it significantly decreases with the blends containing 15 and 20% isobutanol. There is an increase in the BSFC in proportional to the isobutanol content in the blends. Although diesel fuel yields the highest BTE, the blend containing 10% isobutanol results in a slight improvement in BTE at high engine speeds. The results also reveal that, compared to diesel fuel, CO and NOx emissions decrease with the use of the blends, while HC emissions increase considerably.  相似文献   

20.
Numerous chemical analyses of gaseous and particulate samples from laboratory flames provide a library of data on the polycyclic aromatic hydrocarbon (PAH) species found in diverse flame types burning fuels consisting of pure gaseous hydrocarbons. The diesel fuels utilized by the more complex combustion in compression ignition engines are composed of thousands of hydrocarbon species. Mass spectrometry by the laser microprobe and gas chromatography were used in a complementary manner to distinguish the PAHs originating in the fuel from those produced by engine combustion. The CxHy PAH products of premixed and diffusion flame processes, which also occur in the unsteady diesel combustion, range in mass from 128 u (two rings, x=10, y=8) to beyond 350 u (eight rings, x=28, y=14). Graphs of the number of hydrogen atoms y vs the number of carbon atoms x for the species found by many investigators of laboratory flames show these pyrogenic PAHs to lie on or near the staircase curve that describes the most stable, pericondensed, benzenoid PAHs. In contrast, samples of diesel fuels from the United Kingdom and the United States contain petrogenic alkyl-PAHs with high hydrogen contents. Samples of diesel particulate emissions typical of the 1990s from two different sources display the full mass range of PAHs from 128 to 350 u, including both the benzenoid PAHs and the alkyl-PAHs. Thus diesel emissions, in general, may contain petrogenic fuel components ranging up to 206 u and also the combustion-generated four- to seven-ring species in the 228 to 302 u mass range that have greater carcinogenic potency. The absence of petrogenic components larger than 206 u facilitates their detection and delineation from pyrogenic PAHs by methods of chemical analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号