首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Copolymers of ethylene glycol with 4,4′‐bibenzoic acid and terephthalic acid are known to crystallize rapidly to surprisingly high levels of crystallinity. To understand this unusual behavior, the isothermal crystallization of poly(ethylene bibenzoate‐co‐terephthalate) in the molar ratio 55:45 (PETBB55) was studied. Poly(ethylene naphthalate) (PEN) was included in the study for comparison. The kinetics of isothermal crystallization from the melt and from the amorphous glass was determined using differential thermal analysis. The results were correlated with the crystalline morphology as observed with atomic force microscopy (AFM). Crystallization of PEN exhibited similar kinetics and spherulitic morphology regardless of whether it was cooled from the melt or heated from the glass to the crystallization temperature. The Avrami coefficient was close to 3 for heterogeneous nucleation with 3‐dimensional crystal growth. The copolymer PETBB55 crystallized much faster than did PEN and demonstrated different crystallization habits from the melt and from the glass. From the melt, PETBB55 crystallized in the “normal” way with spherulitic growth and an Avrami coefficient of 3. However, crystallization from the glass produced a granular crystalline morphology with an Avrami coefficient of 2. A quasi‐ordered melt state, close to liquid crystalline but lacking the order of a recognizable mesophase, was proposed to explain the unusual crystallization characteristics of PETBB55. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 98–115, 2002  相似文献   

2.
A series of poly(ethylene terephthalate‐co‐4,4′‐bibenzoate)s (PETBBs) were prepared via direct esterification from the monomers of terephthalic acid (TPA), 4,4′‐biphenyl dicarboxylic acid (BPDA), and ethylene glycol (EG) with different molar ratios. The chemical compositions of the obtained PETBBs, investigated by H1‐NMR, were identical with the feed ratio, and the high molecular weights of PETBBs were confirmed by GPC analysis. The glass transition, crystallization, and melting behavior of them were measured by DSC; the results indicated that, in the range of 5–25 mol% of BPDA addition, the glass transition temperature (Tg) increased almost linearly and the melting temperature (Tm) decreased with increasing content of BPDA unit. As expected, the crystallization of PETBB became difficult with increasing introduction of BPDA, explained by higher crystallization temperature and smaller crystallization enthalpy from the glassy state. This decrease of crystallization rate may be beneficial to film processing. Moreover, owing to the introduction of rigid‐rod BPDA unit, the initial and maximum thermal‐oxidative decomposition temperatures were enhanced. The kinetic analysis of the thermal‐oxidative degradation indicated that the apparent activation energies of degradation for these PETBBs became higher than that of PET. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers  相似文献   

3.
Physical blends of poly(ethylene terephthalate) (PET) and poly(ethylene isophthalate) (PEI), abbreviated PET/PEI (80/20) blends, and of PET and a random poly(ethylene terephthalate‐co‐isophthalate) copolymer containing 40% ethylene isophthalate (PET60I40), abbreviated PET/PET60I40 (50/50) blends, were melt‐mixed at 270°C for different reactive blending times to give a series of copolymers containing 20 mol % of ethylene isophthalic units with different degrees of randomness. 13C‐NMR spectroscopy precisely determined the microstructure of the blends. The thermal and mechanical properties of the blends were evaluated by DSC and tensile assays, and the obtained results were compared with those obtained for PET and a statistically random PETI copolymer with the same composition. The microstructure of the blends gradually changed from a physical blend into a block copolymer, and finally into a random copolymer with the advance of transreaction time. The melting temperature and enthalpy of the blends decreased with the progress of melt‐mixing. Isothermal crystallization studies carried out on molten samples revealed the same trend for the crystallization rate. The effect of reaction time on crystallizability was more pronounced in the case of the PET/PET60I40 (50/50) blends. The Young's modulus of the melt‐mixed blends was comparable to that of PET, whereas the maximum tensile stress decreased with respect to that of PET. All blend samples showed a noticeable brittleness. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3076–3086, 2003  相似文献   

4.
The glass‐transition temperatures and melting behaviors of poly(ethylene terephthalate)/poly(ethylene 2,6‐naphthalate) (PET/PEN) blends were studied. Two blend systems were used for this work, with PET and PEN of different grades. It was found that Tg increases almost linearly with blend composition. Both the Gibbs–DiMarzio equation and the Fox equation fit experimental data very well, indicating copolymer‐like behavior of the blend systems. Multiple melting peaks were observed for all blend samples as well as for PET and PEN. The equilibrium melting point was obtained using the Hoffman–Weeks method. The melting points of PET and PEN were depressed as a result of the formation of miscible blends and copolymers. The Flory–Huggins theory was used to study the melting‐point depression for the blend system, and the Nishi–Wang equation was used to calculate the interaction parameter (χ12). The calculated χ12 is a small negative number, indicating the formation of thermodynamically stable, miscible blends. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 11–22, 2001  相似文献   

5.
Poly(ethylene terephthalate) (PET) and poly(ethylene isophthalate) (PEI) homopolymers were synthesized by the two‐step melt polycondensation process of ethylene glycol (EG) with dimethyl terephthalate (DMT) and/or dimethyl isophthalate (DMI), respectively. Nine copolymers of the above three monomers were also synthesized by varying the mole percent of DMI with respect to DMT in the initial monomer feed. The thermal behavior was investigated over the entire range of copolymer composition by differential scanning calorimetry (DSC). The glass transition (Tg), cold crystallization (Tcc), melting (Tm), and crystallization (Tc) temperatures have been determined. Also, the gradually increasing proportion of ethyleno‐isophthalate units in the virgin PET drastically differentiated the tensile mechanical properties, which were determined, and the results are discussed. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 200–207, 2000  相似文献   

6.
The crystallization kinetics of poly(butylene terephthalate) (PBT), poly(ethylene terephthalate) (PET), and their copolymers poly(1,4‐butylene‐co‐ethylene terephthalate) (PBET) containing 70/30, 65/35 and 60/40 molar ratios of 1,4‐butanediol/ethylene glycol were investigated using differential scanning calorimetry (DSC) at crystallization temperatures (Tc) which were 35–90 °C below equilibrium melting temperature . Although these copolymers contain both monomers in high proportion, DSC data revealed for copolymer crystallization behaviour. The reason for such copolymers being able to crystallize could be due to the similar chemical structures of 1,4‐butanediol and ethylene glycol. DSC results for isothermal crystallization revealed that random copolymers had a lower degree of crystallinity and lower crystallite growth rate than those of homopolymers. DSC heating scans, after completion of isothermal crystallization, showed triple melting endotherms for all these polyesters, similar to those of other polymers as reported in the literature. The crystallization isotherms followed the Avrami equation with an exponent n of 2–2.5 for PET and 2.5–3.0 for PBT and PBETs. Analyses of the Lauritzen–Hoffman equation for DSC isothermal crystallization data revealed that PBT and PET had higher growth rate constant Go, and nucleation constant Kg than those of PBET copolymers. © 2001 Society of Chemical Industry  相似文献   

7.
Poly(ethylene glycol) (PEG) and end‐capped poly(ethylene glycol) (poly(ethylene glycol) dimethyl ether (PEGDME)) of number average molecular weight 1000 g mol?1 was melt blended with poly(ethylene terephthalate) (PET) oligomer. NMR, DSC and WAXS techniques characterized the structure and morphology of the blends. Both these samples show reduction in Tg and similar crystallization behavior. Solid‐state polymerization (SSP) was performed on these blend samples using Sb2O3 as catalyst under reduced pressure at temperatures below the melting point of the samples. Inherent viscosity data indicate that for the blend sample with PEG there is enhancement of SSP rate, while for the sample with PEGDME the SSP rate is suppressed. NMR data showed that PEG is incorporated into the PET chain, while PEGDME does not react with PET. Copyright © 2005 Society of Chemical Industry  相似文献   

8.
The production and properties of blends of poly(ethylene terephthalate) (PET) and poly(ethylene naphthalene 2,6‐dicarboxylate) (PEN) with three modified clays are reported. Octadecylammonium chloride and maleic anhydride (MAH) are used to modify the surface of the montmorillonite–Na+ clay particles (clay–Na+) to produce clay–C18 and clay–MAH, respectively, before they are mixed with the PET/PEN system. The transesterification degree, hydrophobicity and the effect of the clays on the mechanical, rheological and thermal properties are analysed. The PET–PEN/clay–C18 system does not show any improvements in the mechanical properties, which is attributed to poor exfoliation. On the other hand, in the PET–PEN/clay–MAH blends, the modified clay restricts crystallization of the matrix, as evidenced in the low value of the crystallization enthalpy. The process‐induced PET–PEN transesterification reaction is affected by the clay particles. Clay–C18 induces the largest proportion of naphthalate–ethylene–terephthalate (NET) blocks, as opposed to clay–Na+ which renders the lowest proportion. The clay readily incorporates in the bulk polymer, but receding contact‐angle measurements reveal a small influence of the particles on the surface properties of the sample. The clay–Na+ blend shows a predominant solid‐like behaviour, as evidenced by the magnitude of the storage modulus in the low‐frequency range, which reflects a high entanglement density and a substantial degree of polymer–particle interactions. Copyright © 2005 Society of Chemical Industry  相似文献   

9.
The crystallization kinetics of poly(ethylene terephthalate)/poly(ethylene 2,6‐naphthalate) (PET/PEN) blends were investigated by DSC as functions of crystallization temperature, blend composition, and PET and PEN source. Isothermal crystallization kinetics were evaluated in terms of the Avrami equation. The Avrami exponent (n) is different for PET, PEN, and the blends, indicating different crystallization mechanisms occurring in blends than those in pure PET and PEN. Activation energies of crystallization were calculated from the rate constants, using an Arrhenius‐type expression. Regime theory was used to elucidate the crystallization course of PET/PEN blends as well as that of unblended PET and PEN. The transition from regime II to regime III was clearly observed for each blend sample as the crystallization temperature was decreased. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 23–37, 2001  相似文献   

10.
In an attempt to minimize the acetaldehyde formation at the processing temperatures (280–300°C) and the outer–inner transesterification reactions in the poly (ethylene terephthalate) (PET)–poly(ethylene naphthalate) (PEN) melt‐mixed blends, the hydroxyl chain ends of PET were capped using benzoyl chloride. The thermal characterization of the melt‐mixed PET–PEN blends at 300°C, as well as that of the corresponding homopolymers, was performed. Degradations were carried out under dynamic heating and isothermal conditions in both flowing nitrogen and static air atmosphere. The initial decomposition temperatures (Ti) were determined to draw useful information about the overall thermal stability of the studied compounds. Also, the glass transition temperature (Tg) was determined by finding data, indicating that the end‐capped copolymers showed a higher degradation stability compared to the unmodified PET and, when blended with PEN, seemed to be efficient in slowing the kinetic of transesterification leading to, for a finite time, the formation of block copolymers, as determined by 1H‐NMR analysis. This is strong and direct evidence that the end‐capping of the ? OH chain ends influences the mechanism and the kinetic of transesterification. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers  相似文献   

11.
Differential scanning calorimetry (DSC) was used to evaluate the thermal behavior and isothermal crystallization kinetics of poly(ethylene terephthalate) (PET) copolymers containing 2‐methyl‐1,3‐propanediol as a comonomer unit. The addition of comonomer reduces the melting temperature and decreases the range between the glass transition and melting point. The rate of crystallization is also decreased with the addition of this comonomer. In this case it appears that the more flexible glycol group does not significantly increase crystallization rates by promoting chain folding during crystallization, as has been suggested for some other glycol‐modified PET copolyesters. The melting behavior following isothermal crystallization was examined using a Hoffman–Weeks approach, showing very good linearity for all copolymers tested, and predicted an equilibrium melting temperature (Tm0) of 280.0°C for PET homopolymer, in agreement with literature values. The remaining copolymers showed a marked decrease in Tm0 with increasing copolymer composition. The results of this study support the claim that these comonomers are excluded from the polymer crystal during growth. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2592–2603, 2006  相似文献   

12.
The phase structure of poly(ethylene terephthalate)/poly(ethylene 2,6‐naphthalate) (PET/PEN) blends was studied in relation to the molecular weight. The samples were prepared by both solution blends, which showed two glass‐transition temperatures (Tg), and melt blends (MQ), which showed a single Tg, depending on the composition of the blends. The Tg of the MQ series was independent of the molecular weight of the homopolymer, although the degree of transesterification in the blends was affected by the molecular weight. The MQ series showed two exotherms during the heating process of a differential scanning calorimetry scan. The peak temperature and the heat flow of the exotherms were affected by the molecular weight of the homopolymers. The strain‐induced crystallization of the MQ series suggested the independent crystallization of PET and PEN. Based on the results, a microdomain structure of each homopolymer was suggested. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 2428–2438, 2005  相似文献   

13.
Blends composed of poly(ethylene terephthalate) (PET) and poly(butylene terephthalate) (PBT) were melt-mixed in a Brabender cam mixer at different mixing speeds. The glass transition (Tg) and the crystallization behavior of the blends from glassy state were studied using DSC. It was found that although the blends had the same composition and exhibited the similar Tg, their properties of crystallization could be different; some exhibited a single crystallization peak and some exhibited multiple crystallization peaks depending upon experimental conditions. Results indicated that the behavior of crystallization from glassy state were influenced by entanglement and transesterification of chains. The crystallization time values were obtained over a wide range of crystallization temperature. From curve fitting, the crystallization time values and the temperature, at which the crystallization rate reaches the maximum, were found.  相似文献   

14.
In this study, we fabricated poly(ethylene terephthalate) (PET)/clay, PET/poly(ethylene glycol‐co‐1,3/1,4‐cyclohexanedimethanol terephthalate) (PETG), and PET/PETG/clay nanocomposite plates and biaxially stretched them into films by using a biaxial film stretching machine. The tensile properties, cold crystallization behavior, optical properties, and gas and water vapor barrier properties of the resulting films were estimated. The biaxial stretching process improved the dispersion of clay platelets in both the PETG and PET/PETG matrices, increased the aspect ratio of the platelets, and made the platelets more oriented. Thus, the tensile, optical, and gas‐barrier properties of the composite films were greatly enhanced. Moreover, strain‐induced crystallization occurred in the PET/PETG blend and in the amorphous PETG matrix. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42207.  相似文献   

15.
Poly(ethylene terephthalate) (PET) was blended with two different poly(oxybenzoate‐p‐trimethylene terephthalate) copolymers, designated T28 and T64, with the level of copolymer varying from 1 to 15 wt %. All samples were prepared by solution blending in a 60/40 (by weight) phenol/tetrachloroethane solvent at 50°C. The crystallization behavior of the samples was studied by DSC. The results indicate that both T28 and T64 accelerated the crystallization rate of PET in a manner similar to that of a nucleating agent. The acceleration of PET crystallization rate was most pronounced in the PET/T64 blends with a maximum level at 5 wt % of T64. The melting temperatures for the blends are comparable to that of pure PET. The observed changes in crystallization behavior are explained by the effect of the physical state of the copolyester during PET crystallization as well as the amount of copolymer in the blends. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1599–1606, 2002  相似文献   

16.
Blends based on recycled high density polyethylene (R‐HDPE) and recycled poly(ethylene terephthalate) (R‐PET) were made through reactive extrusion. The effects of maleated polyethylene (PE‐g‐MA), triblock copolymer of styrene and ethylene/butylene (SEBS), and 4,4′‐methylenedi(phenyl isocyanate) (MDI) on blend properties were studied. The 2% PE‐g‐MA improved the compatibility of R‐HDPE and R‐PET in all blends toughened by SEBS. For the R‐HDPE/R‐PET (70/30 w/w) blend toughened by SEBS, the dispersed PET domain size was significantly reduced with use of 2% PE‐g‐MA, and the impact strength of the resultant blend doubled. For blends with R‐PET matrix, all strengths were improved by adding MDI through extending the PET molecular chains. The crystalline behaviors of R‐HDPE and R‐PET in one‐phase rich systems influenced each other. The addition of PE‐g‐MA and SEBS consistently reduced the crystalline level (χc) of either the R‐PET or the R‐HDPE phase and lowered the crystallization peak temperature (Tc) of R‐PET. Further addition of MDI did not influence R‐HDPE crystallization behavior but lowered the χc of R‐PET in R‐PET rich blends. The thermal stability of R‐HDPE/R‐PET 70/30 and 50/50 (w/w) blends were improved by chain‐extension when 0.5% MDI was added. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
The crystallization behavior of two molecular weight poly(ethylene oxide)s (PEO) and their blends with the block copolymer poly(2‐vinyl pyridine)‐b‐poly(ethylene oxide) (P2VP‐b‐PEO) was investigated by polarized optical microscopy, thermogravimetric analysis, differential scanning calorimetry, and atomic force microscopy (AFM). A sharp decreasing of the spherulite growth rate was observed with the increasing of the copolymer content in the blend. The addition of P2VP‐b‐PEO to PEO increases the degradation temperature becoming the thermal stability of the blend very similar to that of the block copolymer P2VP‐b‐PEO. Glass transition temperatures, Tg, for PEO/P2VP‐b‐PEO blends were intermediate between those of the pure components and the value increased as the content of PEO homopolymer decreased in the blend. AFM images showed spherulites with lamellar crystal morphology for the homopolymer PEO. Lamellar crystal morphology with sheaf‐like lamellar arrangement was observed for 80 wt% PEO(200M) and a lamellar crystal morphology with grain aggregation was observed for 50 and 20 wt% blends. The isothermal crystallization kinetics of PEO was progressively retarded as the copolymer content in the blend increased, since the copolymer hinders the molecular mobility in the miscible amorphous phase. POLYM. ENG. SCI., 2012. © 2011 Society of Plastics Engineers  相似文献   

18.
The transesterification reaction of poly(ethylene terephthalate)/poly(ethylene 2,6‐naphthalate) blends during melt‐mixing was studied as a function of blending temperature, blending time, blend composition, processing equipment, and different grades of poly(ethylene terephthalate) and poly(ethylene 2,6‐naphthalate). Results show that the major factors controlling the reaction are the temperature and time of blending. Efficiency of mixing also plays an important role in transesterification. The reaction kinetics can be modeled using a second‐order direct ester–ester interchange reaction. The rate constant (k) was found to have a minimum value at an intermediate PEN content and the activation energy of the rate constant was calculated to be 140 kJ/mol. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2422–2436, 2001  相似文献   

19.
The miscibility and melting behavior of binary crystalline blends of poly(ethylene terephthalate) (PET)/poly(trimethylene terephthalate) (PTT) have been investigated with differential scanning calorimetry and scanning electron microscope. The blends exhibit a single composition‐dependent glass transition temperature (Tg) and the measured Tg fit well with the predicted Tg value by the Fox equation and Gordon‐Taylor equation. In addition to that, a single composition‐dependent cold crystallization temperature (Tcc) value can be observed and it decreases nearly linearly with the low Tg component, PTT, which can also be taken as a valid supportive evidence for miscibility. The SEM graphs showed complete homogeneity in the fractured surfaces of the quenched PET/PTT blends, which provided morphology evidence of a total miscibility of PET/PTT blend in amorphous state at all compositions. The polymer–polymer interaction parameter, χ12, calculated from equilibrium melting temperature depression of the PET component was ?0.1634, revealing miscibility of PET/PTT blends in the melting state. The melting crystallization temperature (Tmc) of the blends decreased with an increase of the minor component and the 50/50 sample showed the lowest Tmc value, which is also related to its miscible nature in the melting state. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

20.
The crystallization and transition temperatures of poly(ethylene terephthalate) (PET) in blends with polycarbonate (PC) is considered using thermal analysis. Additives typically used in commercial polyester blends, transesterification inhibitor and antioxidant, are found to enhance the crystallization rate of PET. Differential scanning calorimetry (DSC) reveals two glass transition temperatures in PET/PC blends, consistent with an immiscible blend. Optical microscopy observations are also consistent with an immiscible blend. Small shifts observed in the Tg of each component may be due to interactions between the phases. The degree of crystallinity of PET in PET/PC blends is significantly depressed for high PC contents. Also, in blends with PC content greater than 60 wt %, two distinct crystallization exotherms are observed in dynamic crystallization from the melt. The isothermal crystallization kinetics of PET, PET modified with blend additives, and PET in PET/PC blends have been evaluated using DSC and the data analyzed using the Avrami model. The crystallization of PET in these systems is found to deviate from the Avrami prediction in the later stages of crystallization. Isothermal crystallization data are found to superimpose when plotted as a function of time divided by crystallization half-time. A weighted series Avrami model is found to describe the crystallization of PET and PET/PC blends during all stages of crystallization. © 1996 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号