首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synergistic effect between novel synthesized oligomeric amines and a commercial hindered amine light stabilizer (Chimassorb 944) was studied in medium‐density polyethylene (MDPE). Mixtures of the synthesized oligomeric amines and commercial additives were prepared at different concentrations and then were evaluated by ultraviolet and thermal aging. The evaluation was carried out on films prepared by compression molding, and the oxidation rates were monitored with Fourier transform infrared, which was used to measure the formation of different functional groups: carbonyl, vinylic, and hydroperoxide. The data showed that, independently of the concentration of the commercial additives, when they were combined with oligomeric amines, they produced a synergistic effect with a magnitude depending on the MDPE aging conditions and the additive concentrations. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 280–287, 2004  相似文献   

2.
The thermal and mechanical properties of uncrosslinked three‐component blends of linear low‐density polyethylene (LLDPE), low‐density polyethylene (LDPE), and a hard, paraffinic Fischer–Tropsch wax were investigated. A decrease in the total crystallinity with an increase in both LDPE and wax contents was observed. It was also observed that experimental enthalpy values of LLDPE in the blends were generally higher than the theoretically expected values, whereas in the case of LDPE the theoretically expected values were higher than the experimental values. In the presence of higher wax content there was a good correlation between experimental and theoretically expected enthalpy values. The DSC results showed changes in peak temperature of melting, as well as peak width, with changing blend composition. Most of these changes are explained in terms of the preferred cocrystallization of wax with LLDPE. Young's modulus, yield stress, and stress at break decreased with increasing LDPE content, whereas elongation at yield increased. This is in line with the decreasing crystallinity and increasing amorphous content expected with increasing LDPE content. Deviations from this behavior for samples containing 10% wax and relatively low LDPE contents are explained in terms of lower tie chain fractions. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1748–1755, 2005  相似文献   

3.
The effects of the blend ratio, reactive compatibilization, and dynamic vulcanization on the dynamic mechanical properties of high‐density polyethylene (HDPE)/ethylene vinyl acetate (EVA) blends have been analyzed at different temperatures. The storage modulus of the blend decreases with an increase in the EVA content. The loss factor curve shows two peaks, corresponding to the transitions of HDPE and EVA, indicating the incompatibility of the blend system. Attempts have been made to correlate the observed viscoelastic properties of the blends with the blend morphology. Various composite models have been used to predict the dynamic mechanical data. The experimental values are close to those of the Halpin–Tsai model above 50 wt % EVA and close to those of the Coran model up to 50 wt % EVA in the blend. For the Takayanagi model, the theoretical value is in good agreement with the experimental value for a 70/30 HDPE/EVA blend. The area under the loss modulus/temperature curve (LA) has been analyzed with the integration method from the experimental curve and has been compared with that obtained from group contribution analysis. The LA values calculated with group contribution analysis are lower than those calculated with the integration method. The addition of a maleic‐modified polyethylene compatibilizer increases the storage modulus, loss modulus, and loss factor values of the system, and this is due to the finer dispersion of the EVA domains in the HDPE matrix upon compatibilization. For 70/30 and 50/50 blends, the addition of a maleic‐modified polyethylene compatibilizer shifts the relaxation temperature of both HDPE and EVA to a lower temperature, and this indicates increased interdiffusion of the two phases at the interface upon compatibilization. However, for a 30/70 HDPE/EVA blend, the addition of a compatibilizer does not change the relaxation temperature, and this may be due to the cocontinuous morphology of the blends. The dynamic vulcanization of the EVA phase with dicumyl peroxide results in an increase in both the storage and loss moduli of the blends. A significant increase in the relaxation temperature of EVA and a broadening of the relaxation peaks occur during dynamic vulcanization, and this indicates the increased interaction between the two phases. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 87: 2083–2099, 2003  相似文献   

4.
CaCO3–polyethylene (PE) compositions, containing an ultrahigh molecular polyethylene (UHMPE) interlayer between the filler surface and the PE matrix, were synthesized by two‐step polymerization of ethylene on a filler surface activated with a suitable catalyst. The properties of the compositions were studied depending on the molecular weight of the PE matrix and the thickness of the UHMPE intermediate layer at the filler particles. It was shown that the presence of UHMPE as an interlayer in chalk–UHMPE–PE compositions leads to an increase of plastic deformation of the materials as long as the Mw value of the PE matrix is higher than is the brittleness threshold for PE. Chalk–UHMPE–PE compositions exhibit a higher ability for plastic deformation compared to chalk–PE compositions based on a PE matrix of a molecular weight equal to the molecular weight of the total polymer phase (UHMPE–PE) in the first case. There is no improvment of the mechanical properties when the UHMPE is dispersed in the compositions and not as an interlayer between a filler and a matrix. This means that the method of polymerization filling allows one to incorporate the polymer interlayer with a desired nature and properties between a filler surface and polymer matrix in filled polyolefin compositions. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 577–583, 2003  相似文献   

5.
Uncrosslinked and chemically crosslinked binary blends of low‐ and high‐density polyethylene (PE), with ethylene vinyl acetate copolymer (EVA), were prepared by a melt‐mixing process using 0–3 wt % tert‐butyl cumyl peroxide (BCUP). The uncrosslinked blends revealed two distinct unchanged melting peaks corresponding to the individual components of the blends, but with a reduced overall degree of crystallinity. The crosslinking further reduced crystallinity, but enhanced compatibility between EVA and polyethylene, with LDPE being more compatible than HDPE. Blended with 20 wt % EVA, the EVA melting peak was almost disappeared after the addition of BCUP, and only the corresponding PE melting point was observed at a lowered temperature. But blended with 40% EVA, two peaks still existed with a slight shift toward lower temperatures. Changes of mechanical properties with blending ratio, crosslinking, and temperature had been dominated by the extent of crystallinity, crosslinking degree, and morphology of the blend. A good correlation was observed between elongation‐at‐break and morphological properties. The blends with higher level of compatibility showed less deviation from the additive rule of mixtures. The deviation became more pronounced for HDPE/EVA blends in the phase inversion region, while an opposite trend was observed for LDPE/EVA blends with co‐continuous morphology. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3261–3270, 2007  相似文献   

6.
The effect of poly(dianilinephosphazene) (PDAP) on the processability, thermal behavior, crystallinity, morphology, mechanical properties, and flammability behavior of low‐density polyethylene (LDPE) was studied. Plasticorder traces of PDAP/LDPE blends implied good processability and miscibility. Thermogravimetric analysis showed that PDAP improved the thermal stability of LDPE. X‐ray diffraction results indicated that PDAP was a semicrystalline polymer, and the crystallinity of the blends decreased with increasing PDAP content. A new reflection at 2θ = 23.15° was found in wide‐angle X‐ray diffraction spectra of the blends, indicating that these two components interacted with one another. The scanning electron microscopy microstructures of the blends also supported these findings. Moreover, PDAP substantially enhanced the limited oxygen index and elongation at break of LDPE. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 709–714, 2002  相似文献   

7.
Blends of low‐density polyethylene (LDPE) and poly(ethylene terephthalate) (PET) were prepared with different weight compositions with a plasticorder at 240°C at a rotor speed of 64 rpm for 10 min. The physicomechanical properties of the prepared blends were investigated with special reference to the effects of the blend ratio. Graft copolymers, that is, LDPE‐grafted acrylic acid and LDPE‐grafted acrylonitrile, were prepared with γ‐irradiation. The copolymers were melt‐mixed in various contents (i.e., 3, 5, 7, and 9 phr) with a LDPE/PET blend with a weight ratio of 75/25 and used as compatibilizers. The effect of the compatibilizer contents on the physicomechanical properties and equilibrium swelling of the binary blend was investigated. With an increase in the compatibilizer content up to 7 phr, the blend showed an improvement in the physicomechanical properties and reduced equilibrium swelling in comparison with the uncompatibilized one. The addition of a compatibilizer beyond 7 phr did not improve the blend properties any further. The efficiency of the compatibilizers (7 phr) was also evaluated by studies of the phase morphology (scanning electron microscopy) and thermal properties (differential scanning calorimetry and thermogravimetric analysis). © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

8.
Polyolefins, particularly polyethylene, are known to fail via crack initiation and crack propagation when exposed to multiaxial long‐term static stresses at elevated temperatures. Using concepts of linear elastic fracture mechanics, this article describes and discusses the effects of stabilization on the kinetics of creep crack growth (CCG) in high‐density polyethylene (PE‐HD) and the failure micromechanisms involved. As for the influence of stabilization, six PE‐HD formulations (two polymer types, each with three stabilizer systems) were investigated. CCG initiation times and CCG rates were determined at 60 and 80°C in distilled water as functions of the crack tip stress field characterized by the stress intensity factor. Although no influence of the stabilizer type was found in either polymer type for CCG initiation times and CCG rates at high crack speeds, significant effects of the added stabilizer type and concentration were detected for low CCG rates. The observed phenomena were explained in terms of local aging processes in the immediate vicinity of the crack tip, which were controlled by the presence and content of various stabilizers. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3191–3207, 2003  相似文献   

9.
Chemiluminescence (CL) monitoring has successfully been applied to the study of the oxidative degradation of two‐component polyethylene blends made with commercially available low‐density polyethylene, linear low‐density polyethylene, high‐density polyethylene, and metallocene‐catalyzed linear low‐density polyethylene (mLLDPE) formulations. The emphasis in the analysis of the results is placed on blends containing mLLDPE to address the lack of CL information on these blends. The CL data are consistent with the thermal and physicomechanical properties of the blends, with a decreased blend miscibility being reflected in the CL data as a departure from the idealized behavior observed for more miscible blends. Furthermore, the results suggest that immiscibility in the solid state is reflected to some extent in the behavior of the melt. Preliminary experiments conducted to determine the level of consistency of CL results with respect to both variability between instruments and variability between techniques indicate a high degree of correlation in each case. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3006–3015, 2003  相似文献   

10.
The dynamic rheological and mechanical properties of the binary blends of two conventional high‐density polyethylenes [HDPEs; low molecular weight (LMW) and high molecular weight (HMW)] with distinct different weight‐average molecular weights were studied. The rheological results show that the rheological behavior of the blends departed from classical linear viscoelastic theory because of the polydispersity of the HDPEs that we used. Plots of the logarithm of the zero shear viscosity fitted by the Cross model versus the blend composition, Cole–Cole plots, Han curves, and master curves of the storage and loss moduli indicated the LMW/HMW blends of different compositions were miscible in the melt state. The tensile yield strength of the blends generally followed the linear additivity rule, whereas the elongation at break and impact strength were lower than those predicted by linear additivity; this suggested the incompatibility of the blends in solid state. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

11.
The effects of polyethylene‐grafted maleic anhydride (PE‐g‐MA) on the thermal properties, morphology, and tensile properties of blends of low‐density polyethylene (LDPE) and corn starch were studied with a differential scanning calorimeter (DSC), scanning electron microscope (SEM), and Instron Universal Testing Machine, respectively. Corn starch–LDPE blends with different starch content and with or without the addition of PE‐g‐MA were prepared with a lab‐scale twin‐screw extruder. The crystallization temperature of LDPE–corn starch–PE‐g‐MA blends was similar to that of pure LDPE but higher than that of LDPE–corn starch blends. The interfacial properties between corn starch and LDPE were improved after PE‐g‐MA addition, as evidenced by the structure morphology revealed by SEM. The tensile strength and elongation at break of corn starch–LDPE–PE‐g‐MA blends were greater than those of LDPE–corn starch blends, and their differences became more pronounced at higher starch contents. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2904–2911, 2003  相似文献   

12.
This study was concerned with the structural features and mechanical properties of polypropylene (PP)/low‐density polyethylene (LDPE) blends, which after compounding were modified by the free‐radical grafting of itaconic acid (IA) to produce [PP/LDPE]‐g‐IA in the course of reactive extrusion. To analyze the structural features of the [PP/LDPE]‐g‐IA systems, differential scanning calorimetry and relaxation spectrometry techniques were used. The data were indicative of the incompatibility of PP and LDPE in the [PP/LDPE]‐g‐IA systems on the level of crystalline phases; however, favorable interactions were observed within the amorphous phases of the polymers. Because of these interactions, the crystallization temperature of PP increased by 5–11°C, and that of LDPE increased by 1.3–2.7°C. The rapprochement of their glass‐transition temperatures was observed. The single β‐relaxation peak for the [PP/LDPE]‐g‐IA systems showed that compatibility on the level of structural units was responsible for β relaxation in the homopolymers used. Variations in the ratios of the polymers in the [PP/LDPE]‐g‐IA systems led to both nonadditive and complex changes in the viscoelastic properties as well as mechanical characteristics for the composites. Additions of up to 5 wt % PP strengthened the [PP/LDPE]‐g‐IA blended systems between the glass‐transition temperatures of LDPE and PP. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1746–1754, 2006  相似文献   

13.
Glass beads were used to improve the mechanical and thermal properties of high‐density polyethylene (HDPE). HDPE/glass‐bead blends were prepared in a Brabender‐like apparatus, and this was followed by press molding. Static tensile measurements showed that the modulus of the HDPE/glass‐bead blends increased considerably with increasing glass‐bead content, whereas the yield stress remained roughly unchanged at first and then decreased slowly with increasing glass‐bead content. Izod impact tests at room temperature revealed that the impact strength changed very slowly with increasing glass‐bead content up to a critical value; thereafter, it increased sharply with increasing glass‐bead content. That is, the Izod impact strength of the blends underwent a sharp transition with increasing glass‐bead content. It was calculated that the critical interparticle distance for the HDPE/glass‐bead blends at room temperature (25°C) was 2.5 μm. Scanning electron microscopy observations indicated that the high impact strength of the HDPE/glass‐bead blends resulted from the deformation of the HDPE matrix. Dynamic mechanical analyses and thermogravimetric measurements implied that the heat resistance and heat stability of the blends tended to increase considerably with increasing glass‐bead content. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2102–2107, 2003  相似文献   

14.
The mechanical behavior of two γ‐irradiated linear polyethylenes was determined at 75 and 105°C under tensile stress. Each polymer was crystallized from the melt after different thermal histories so that samples would be obtained with various degrees of crystallinity. Subsequently, they were irradiated in vacuo and at room temperature to total doses ranging from 20 to 200 kGy. The initial crystallinity, dose level, and test temperature determined whether the samples displayed ductile, brittle, or transitional behavior. The yield stress decreased as the temperature increased. The value of the yield stress at a given temperature showed a tendency to increase with dose; this became more evident as the initial crystallinity increased. The extensibility of ductile samples, estimated from the draw ratio after break, decreased with the gel content. For ductile samples, the temperature affected the values of this property when the gel fraction that developed in the samples was relatively low. The effect of temperature became less noticeable when the gel reached values larger than 60%. The ultimate stress, normalized with the crosslinking density, correlated with the draw ratio after break in a way that resembled the type of relationship observed in other crosslinked systems. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1925–1935, 2003  相似文献   

15.
The compatibility of low‐density polyethylene and poly(ethylene‐co‐vinyl acetate) containing 18 wt % vinyl acetate units (EVA‐18) was studied. For this purpose, a series of different blends containing 25, 50, or 75 wt % EVA‐18 were prepared by melt mixing with a single‐screw extruder. For each composition, three different sets of blends were prepared, which corresponded to the three different temperatures used in the metering section and the die of the extruder (140, 160, and 180°C), at a screw rotation speed of 42 rpm. Blends that contained 25 wt % EVA‐18 were also prepared through mixing at 140, 160, or 180°C but at a screw speed of 69 rpm. A study of the blends by differential scanning calorimetry showed that all the prepared blends were heterogeneous, except that containing 75 wt % EVA‐18 and prepared at 180°C. However, because of the high interfacial adhesion, a fine dispersion of the minor component in the polymer matrix was observed for all the studied blends with scanning electron microscopy. The tensile strengths and elongations at break of the blends lay between the corresponding values of the two polymers. The absence of any minimum in the mechanical properties was strong evidence that the two polymers were compatible over the whole range of composition. The thermal shrinkage of the blends at various temperatures depended mainly on the temperature and EVA‐18 content. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 841–852, 2003  相似文献   

16.
Linear low-density polyethylene (LLDPE)/polybutadiene (PB) and LLDPE/poly(styrene-b-butadiene-b-styrene) (SBS) binary blends were prepared by simple melt mixing or by reactive blending in the presence of a free-radical initiator, and for comparison, pure LLDPE was treated under the same conditions with a comparable free-radical initiator concentration. The effect of the reactive melt mixing on the morphology of the blends was studied with transmission electron microscopy, and the corresponding particle size distributions were analyzed and compared to highlight the effects of the crosslinking and grafting phenomena. Thermal properties of the obtained materials were investigated with differential scanning calorimetry and dynamic mechanical thermal analysis (DMTA). In particular, the effect of the reactive mixing parameters on the amorphous phase mobility was investigated. The influence of the chemical modification on the crystallization behavior of LLDPE, neat and blended with PB and SBS, was also studied with dynamic and isothermal differential scanning calorimetry tests, and the isothermal thermograms were analyzed in light of the Avrami equation. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

17.
The easy, low‐cost modification of the polarity of low‐density polyethylene (LDPE) and high‐density polyethylene (HDPE) through blending with oxidized Fischer–Tropsch wax was investigated. A 10 wt % concentration of the wax increased the polar component of the total surface free energy 10 times for LDPE and 4.5 times for HDPE. Modified LDPE also had significantly higher adhesion to the polar substrate, which was represented by a crosslinked epoxy‐based resin. This behavior was not observed for HDPE. The conservation of the good mechanical properties of polyethylene was observed. The wax content had only a moderate influence on the mechanical properties. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 95: 1164–1168, 2005  相似文献   

18.
Branched polyethylenes, low‐density polyethylenes (LDPE1 and LDPE2) or long‐chain‐branched very low density polyethylenes (VLDPE2), were blended with very low density polyethylenes containing short branches (VLDPE1 and VLDPE3). The rheological and thermal measurements of the pure copolymers and their blends (VLDPE1–LDPE1, VLDPE1–LDPE2, VLDPE1–VLDPE2, and VLDPE2–VLDPE3) were taken by controlled stress rheometry and differential scanning calorimetry, respectively. The shear‐thinning effect became stronger with increasing long‐chain‐branched polymer compositions when it was correlated with the flow behavior index, and the extent of shear thinning was different for each blend set. Stronger shear thinning and a linear composition dependence of the zero‐shear viscosity were observed for the VLDPE1–LDPE1 and VLDPE1–LDPE2 blends. These blends followed the log additivity rule, and this indicated that they were miscible in the melt at all compositions. In contrast, a deviation from the log additivity rule was observed for the VLDPE1–VLDPE2 blend compositions with 50% or less VLDPE2 and for the VLDPE3–VLDPE2 blends with 50% or more VLDPE2. The thermal properties of the blends were consistent with the rheological properties. VLDPE1–LDPE1 and VLDPE1–LDPE2 showed that these blends were characteristic of a single‐component system at all compositions, whereas the phase separation (immiscibility) was detected only for VLDPE1–VLDPE2 blends with 50% or less VLDPE2 and for VLDPE3–VLDPE2 blends with 50% or more VLDPE2. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 95: 1549–1557, 2005  相似文献   

19.
The interfacial reaction of the polyethylene (PE)/starch blend system containing the reactive compatibilizer maleated polyethylene (m‐PE) was directly characterized by Fourier transform infrared (FTIR) spectroscopy. A significant amount of anhydride groups on m‐PE existed as hydrolyzed forms, resulting in a large amount of carboxyl groups. Using a vacuum‐heating‐cell designed in the laboratory, the carboxyl groups were successfully transformed into the dehydrolyzed state (i.e., anhydride group). This result enabled the direct spectroscopic observation of chemical reaction occurring at the interface. For the PE/starch blend system containing m‐PE, the chemical reaction at the interface was verified by the evolution of ester and carboxyl groups in the FTIR spectra. The effect of the reactive compatibilizer on the interfacial morphology was also examined by scanning electron micrography (SEM). Enhanced interfacial adhesion was clearly observed for the blend system containing reactive compatibilizer. Tensile strengths of blend systems containing m‐PE also increased noticeably compared with the corresponding system without compatibilizer. A similar observation was made for the breaking elongation data. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 767–776, 2002  相似文献   

20.
Six film samples of varying compositions of linear low‐density polyethylene (LLDPE), 10–35 wt %, and high‐density polyethylene (HDPE), 40–65 wt %, having a fixed percentage of low‐density polyethylene (LDPE) at 25 wt % were extruded by melt blending in a single‐screw extruder (L/D ratio = 20 : 1) of uniform thickness of 2 mil. The tensile strength, elongation at break, and impact strength were found to increase up to 60 wt % HDPE addition, starting from 40 wt % HDPE, in the blends and then decreased. The blend sample B‐500 was found to be more thermally stable than its counterparts. The appearance of a single peak beyond 45 wt % HDPE content in the blend in dynamic DSC scans showed the formation of miscible blend systems and this was further confirmed by scanning electron microscopic analysis. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1691–1698, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号