首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The deformation and fracture behavior of several dynamic vulcanizate blends of isotactic polypropylene with ethylene‐propylene‐diene rubber (EPDM) was examined and compared with those of uncrosslinked blends of PP/EPDM. These blends were prepared by melt mixing in an internal mixer at 190°C in a composition range of 10–40 wt % EPDM rubber. The variation in yield stress, the strength of fibrils of the craze, and the number density of the EPDM rubber domains (morphology fixation) that are dominant factors for enhancing interfacial adhesion and toughness in dynamic vulcanizate blends were evaluated. The ductility and toughness of these materials were explained in light of the composition between crack formation and the degree of plastic deformation through crazing and shear yielding. The physicomechanical properties including the hardness, yield stress, Young's modulus, percentage elongation, impact strength, flexural strength, and flexural modulus of dynamic vulcanized blends were found to be consistent and displayed higher values compared with uncrosslinked blends. The nucleation effect of the crosslinked particles and the decrease of crystallinity of the EPDM rubber were also considered to contribute to the improvement in the impact strength. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 2089–2103, 2000  相似文献   

2.
The effects of ionizing radiation on ethylene‐propylene copolymer were evaluated over the range of total γ doses up to 500 kGy. The influence of the irradiation dose was investigated by oxygen uptake and thermal analysis. Four testing temperatures (170, 180, 190, and 200°C) and two heating rates between 2.9 and 5.9 K/min were selected for oxygen uptake measurements and thermal analysis, respectively. The competition between crosslinking and scission was examined on the basis of kinetic parameters of postirradiation oxidation. The influence of the momentary concentration of hydrocarbon free radicals is discussed in regard to the contribution of the antagonistic processes of crosslinking and oxidative degradation. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 298–303, 2000  相似文献   

3.
In this research, the reinforcement of polypropylene (PP) was studied using a new method that is more practical for synthesizing polypropylene‐block‐poly(ethylene‐propylene) copolymer (PP‐co‐EP), which can be used as a rubber toughening agent. This copolymer (PP‐co‐EP) could be synthesized by varying the feed condition and changing the feed gas in the batch reactor system using Ziegler–Natta catalysts system at a copolymerization temperature of 10°C. The 13C‐NMR tested by a 21.61‐ppm resonance peak indicated the incorporation of ethylene to propylene chains that could build up the microstructure of the block copolymer chain. Differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and dynamic mechanical analysis (DMA) results also confirmed these conclusions. Under these conditions, the morphology of copolymer trapped in PP matrix could be observed and the copolymer Tg would decrease when the amount of PP‐co‐EP was increased. DMA study also showed that PP‐co‐EP is good for the polypropylene reinforcement at low temperature. Moreover, the PP‐co‐EP content has an effect on the crystallinity and morphology of polymer blend, i.e., the crystallinity of polymer decreased when the PP‐co‐EP content increased, but tougher mechanical properties at low temperature were observed. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3609–3616, 2007  相似文献   

4.
Liquid–liquid (L–L) phase separation and its effects on crystallization in polypropylene (PP)/ethylene–propylene rubber (EPR) blends obtained by melt extrusion were investigated by time‐resolved light scattering (TRLS) and optical microscopy. L–L phase separation via spinodal decomposition (SD) was confirmed by TRLS data. After L–L phase separation at 250°C for various durations, blend samples were subjected to a temperature drop to 130°C for isothermal crystallization, and the effects of L–L phase separation on crystallization were investigated. Memory of the L–L phase separation via SD remained for crystallization. The crystallization rate decreased with increasing L–L phase‐separated time at 250°C. Slow crystallization for the long L–L phase‐separated time could be ascribed to decreasing chain mobility of PP with a decrease in the EPR component in the PP‐rich region. The propylene‐rich EPR exhibited good affinity with PP, leading to a slow growth of a concentration fluctuation during annealing. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 695–700, 2001  相似文献   

5.
Tiger stripe of injection molding of polypropylene (PP)/elastomer/talc blends was analyzed in terms of the morphology of the dispersed phase comprising elastomer components by using gloss and scanning electron microscopy (SEM). In addition, the contribution of the polymer design of PP, i.e., industrial block‐type grade consisting of a homo‐PP portion as the matrix and an ethylene propylene random copolymer portion as the domain is discussed. Local gloss measurement of the injected specimen along with the flow direction of the molten blends indicates a periodic fluctuation repeating higher and lower degrees of gloss, corresponding to the period of glossy and cloudy portions of the tiger stripe, respectively. These local gloss degrees are highly dependent on the morphologies of the dispersed phases near the surface layer of the injected specimen. The gloss increases when the ratio long axis (L) and diameter (D), L/D, of the dispersed phase are increased, and the gloss decreases when the L/D is decreased. Increasing the intrinsic viscosity of the ethylene‐propylene rubber portion of the PP is an effective design factor for restricting the deformation against shear strain during injection process by giving the dispersed phases high elasticity. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 192–199, 2007  相似文献   

6.
The reactive compatibilization of syndiotactic polystyrene (sPS)/oxazoline‐styrene copolymer (RPS)/maleic anhydride grafted ethylene‐propylene copolymer (EPR‐MA) blends is investigated in this study. First, the miscibility of sPS/RPS blends is examined by thermal analysis. The cold crystallization peak (Tcc) moved toward higher temperature with increased PRS, and, concerning enthalpy relaxation behaviors, only a single enthalpy relation peak was found in all aged samples. These results indicate that the sPS/RPS blend is miscible along the various compositions and RPS can be used in the reactive compatibilization of sPS/RPS/EPR‐MA blends. The reactive compatibilized sPS/RPS/EPR‐MA blends showed finer morphology than sPS/EPR‐MA physical blends and higher storage modulus (G') and complex viscosity (η*) when RPS contents were increased. Moreover, the impact strength of sPS/RPS/EPR‐MA increased significantly compared to sPS/EPR‐MA blend, and SEM micrographs after impact testing show that the sPS/RPS/EPR‐MA blend has better adhesion between the sPS matrix and the dispersed EPR‐MA phase. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2084–2091, 2002  相似文献   

7.
The miscibility of polymers is not only an important basis for selecting a proper blending method, but it is also one of the key factors in determining the morphology and properties of the blends. The miscibility between ethylene‐propylene‐diene terpolymer (EPDM) and polypropylene (PP) was explored by means of dynamic mechanical thermal analysis, transmission electron microscopy (TEM), and differential scanning calorimetry (DSC). The results showed that a decrease in the PP content and an increase of the crosslinking density of EPDM in the EPDM/PP blends caused the glass‐transition temperature peaks of EPDM to shift from a lower temperature to higher one, yet there was almost no variance in the glass‐transition temperature peaks of PP and the degree of crystallinity of PP decreased. It was observed that the blends prepared with different mixing equipment, such as a single‐screw extruder and an open mill, had different mechanical properties and blends prepared with the former had better mechanical properties than those prepared with the latter. The TEM micrographs revealed that the blends were composed of two phases: a bright, light PP phase and a dark EPDM phase. As the crosslinking degree of EPDM increased, the interface between the phases of EPDM and PP was less defined and the EPDM gradually dispersed in the PP phase became a continuous phase. The results indicated that EPDM and PP were both partially miscible. The mechanical properties of the blends had a lot to do with the blend morphology and the miscibility between the blend components. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 315–322, 2002  相似文献   

8.
Rheological and morphological studies were performed on polymer blends of ethylene‐octene copolymer [polyethylene elastomer (PEE)] and polypropylene (PP). The viscosities of PEE, PP, and PEE/PP blends were analyzed using an Instron capillary rheometer and a Rheometrics Dynamic Stress Rheometer, SR 200. A non‐Newtonian flow behavior was observed in all samples in the shear rate range from 27 to 2700 s−1, whereas at shear rates in the range from 0.01 to 0.04 s−1, a Newtonian flow behavior was verified. The scanning electron micrographs showed that dual‐phase continuity may occur between 50 and 60 (wt %) of PEE. This result is consistent with the Sperling's model. The mechanical analysis showed that PEE/PP, with 5 wt % of PEE, presented an increase on the mechanical properties and as the PEE content increased, a negative deviation in relation to an empirical equation was observed. Thermal analysis showed that there were no change in the crystallization behavior of the matrix when different elastomer contents were added. Dynamic mechanical thermal analysis showed that samples with low PEE contents presented only one peak, indicating a certain degree of miscibility between the components of these blends. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 692–704, 2000  相似文献   

9.
We studied tensile behavior of low‐molecular‐weight (MW) polypropylene (PP)/ethylene–propylene rubber (EPR; 70/30) blends from the viewpoint of the MWs of PP and EPR and the compatibility between PP and EPR. The value of the melt flow rate of PP varied from 30 to 700 g/10 min at 230°C. We studied the compatibility between PP and EPR by varying the propylene content in EPR (27 and 68 wt %). At the initial elongation stage, crazes were observed in all blends. When blends included EPR with 27 wt % propylene, the elongation at break of the low‐MW PP improved little. The blends with EPR and 68 wt % propylene content were elongated further beyond their yielding points. The elongation to rupture was increased with increasing MW of EPR. Molecular orientation of the low‐MW PP was manifested by IR dichroism measurements and X‐ray diffraction patterns. The blends of low‐MW PP and EPR could be elongated by the partial dissolution of EPR of high‐MW in the PP amorphous phase. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 46–56, 2002  相似文献   

10.
Mercapto‐modified ethylene‐vinyl acetate (EVASH) has been employed as a reactive compatibilizing agent for nitrile‐butadiene rubber (NBR)/ethylene‐propylene‐diene monomer (EPDM) blends vulcanized with a sulfur/2,2′‐dithiobisbenzothiazole (MBTS) single accelerator system and a (sulfur/MBTS/tetramethylthiuram disulfide (TMTD) binary accelerator system. The addition of 5.0 phr EVASH resulted in a significant improvement in the tensile properties of blends vulcanized with the sulfur/MBTS system. In addition to better mechanical performance, these functionalized copolymers gave rise to a more homogeneous morphology and, in some cases, better aging resistance. The compatibilization was not efficient in blends vulcanized with the S/MBTS/TMTD binary system, probably because of the faster vulcanization process occurring in this system. The good performance of these EVASH samples as compatibilizing agents for NBR/EPDM blends is attributed to the higher polarity of these components that is associated with their lower viscosity. Dynamic mechanical analysis also suggested a good interaction between the phases in the presence of EVASH. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1404–1412, 2004  相似文献   

11.
A polypropylene homopolymer was blended with ethylene–propylene rubber in different mixing ratios. The influence of the ethylene–propylene rubber content on the toughness behavior was investigated. According to the results of instrumented impact tests, brittle‐to‐tough transition temperatures were found for different ethylene–propylene rubber contents. Critical transition temperatures could be determined not only in the region of predominantly unstable crack propagation but also in the region of stable crack initiation. In situ measurements provided information on the deformation processes on the crack tip. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 3364–3371, 2006  相似文献   

12.
In the present work, statistical (EOCs) and block (OBCs) ethylene‐octene copolymers, with similar densities and crystallinities, were used as impact modifiers of isotactic polypropylene (iPP), and the toughening effects of these two types of elastomers were compared. The viscosity curves of EOCs were similar to those of OBCs with equivalent melt flow rate (MFR), enabling a comparison of the viscosity ratio and elastomer type as independent variables. No distinct differences on the crystal forms and crystal perfection of iPP matrix in various blends were observed by thermal analysis. Morphological examination showed that OBCs form smaller dispersed domains than EOCs with similar MFRs. The flexural modulus, yield stress, stress and strain at break showed the same variation tendency for all the investigated polypropylene/elastomer blends. However, the room temperature Izod impact toughness of iPP/OBC blend was higher than that of iPP/EOC blend containing elastomer with the similar MFRs. The experimental results indicated that the compatibility of iPP/OBCs was much higher than that of iPP/EOCs. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
The influence of the interphase layer, formed by the introduction of an oil in ethylene–propylene rubber (EPR), on the structure and properties of isotactic polypropylene (iPP)/EPR blends was studied. The dispersity of the rubber phase in the iPP matrix did not depend on presence of oil. The melting temperature of iPP decreased with increasing content of oil‐extended EPR, and it did not change if the oil was absent. The compatibility parameter was determined from the dependency of the iPP melting point on the rubber content with the Nishi–Wang equation. A negative value of the parameter indicated a limited compatibility of iPP with oil‐extended EPR. The latter also reduced the temperature and heat of crystallization of iPP. The mechanical properties of iPP/EPR blends were investigated as functions of temperature and elongation rate. It appeared that elastic modulus and yield stress of the blends linearly depended on the logarithm of the elongation rate. Activation volumes, calculated with the Eyring equation, increased with increasing content of elastomer; moreover, this increase was more pronounced for the oil‐extended elastomer. It is suggested that the oil influenced the structure of the interphase layer and, accordingly, the characteristics of the iPP/EPR blends. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 249–257, 2003  相似文献   

14.
Study of melts rheological properties of unvulcanized and dynamically vulcanized polypropylene (PP)/ethylene‐propylene‐diene rubber (EPDM) blends, at blending ratios 10–40 wt %, EPDM, are reported. Blends were prepared by melt mixing in an internal mixer at 190°C and rheological parameters have been evaluated at 220°C by single screw capillary rheometer. Vulcanization was performed with dimethylol phenolic resin. The effects of (i) blend composition; (ii) shear rate or shear stress on melt viscosity; (iii) shear sensitivity and flow characteristics at processing shear; (iv) melt elasticity of the extrudate; and (v) dynamic cross‐linking effect on the processing characteristics of the blends were studied. The melt viscosity increases with increasing EPDM concentration and decreased with increasing intensity of the shear mixing for all compositions. In comparison to the unvulcanized blends, dynamically vulcanized blends display highly pseudoplastic behavior provides unique processing characteristics that enable to perform well in both injection molding and extusion. The high viscosity at low shear rate provides the integrity of the extrudate during extrusion, and the low viscosity at high shear rate enables low injection pressure and less injection time. The low die‐swell characteristics of vulcanizate blends also give high precision for dimensional control during extrusion. The property differences for vulcanizate blends have also been explained in the light of differences in the morphology developed. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 1488–1505, 2000  相似文献   

15.
A new family of homogeneous polyolefin polymers that exhibit unique molecular and rheological properties designated polyolefin elastomers (POEs) are characterized by a narrow molecular weight and high degrees of comonomer distribution. Because these copolymers are often elastomeric in nature, one of the uses for these materials is as impact properties improver for brittle polymers such as polypropylene at low temperatures. In this work a study was carried out about the effectiveness of the polyethylene elastomer (POE) as an impact modifier for polypropylene in relation to the traditional modifier EPDM. In this study the flow properties of of the POE/PP and EPDM/PP blends were also evaluated. The blends were analyzed by solid-state 13C nuclear magnetic resonance (13C-NMR) spectroscopy, scanning electron microscopy (SEM), and differential scanning calorimetry (DSC). The results showed that PEE/PP and EPDM/PP blends present a similar crystalline behavior, which resulted in a similar mechanical performance of the blends, on the composition analyzed. It was also verified that the POE/PP blend presents lower torque values than the EPDM/PP blend, which indicates a better processability when POE is used as an impact modifier. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 2005–2014, 1997  相似文献   

16.
Filled covulcanizates of elastomer blend comprising natural rubber (NR) and ethylene‐propylene‐diene rubber (EPDM) of commercial importance were successfully prepared by using a multifunctional rubber additive; namely, bis(diisopropyl)thiophosphoryl disulfide (DIPDIS). A Two‐stage vulcanization technique further improved the physicochemical properties of the blend vulcanizates by restricting, through the formation of polar rubber bound intermediates, the migration of curative and filler from lower to highly unsaturated rubber. Scanning electron microscopy studies indicate homogeneity and coherency in the morphology of the two‐stage vulcanizates. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1001–1010, 2002; DOI 10.1002/app.10361  相似文献   

17.
将三元乙丙橡胶(EPDM)与环氧化天然橡胶(ENR)共交联改性后,再与天然橡胶(NR)共混,考察了ENR共交联改性EPDM/NR共混胶的硫化特性、硫化胶的物理机械性能、溶胀指数和耐热空气老化性能,并对该硫化胶进行了差示扫描量热分析。结果表明,EPDM经过ENR共交联改性后与NR共混,ENR共交联改性EPDM/NR共混胶的交联程度明显提高,各相达到了同步交联,硫化胶的综合性能得到了显著改善。  相似文献   

18.
The functions of crystallizable ethylene‐propylene copolymers in the formation of multiple phase morphology of high impact polypropylene (hiPP) were studied by solvent extraction fractionation, transmission electron microscopy (TEM), selected area electron diffraction (SAED), nuclear magnetic resonance (13C‐NMR), and selected reblending of different fractions of hiPP. The results indicate that hiPP contains, in addition to polypropylene (PP) and amorphous ethylene‐propylene random copolymer (EPR) as well as a small amount of polyethylene (PE), a series of crystallizable ethylene‐propylene copolymers. The crystallizable ethylene‐propylene copolymers can be further divided into ethylene‐propylene segmented copolymer (PE‐s‐PP) with a short sequence length of PE and PP segments, and ethylene‐propylene block copolymer (PE‐b‐PP) with a long sequence length of PE and PP blocks. PE‐s‐PP and PE‐b‐PP participate differently in the formation of multilayered core‐shell structure of the dispersed phase in hiPP. PE‐s‐PP (like PE) constructs inner core, PE‐b‐PP forms outer shell, while intermediate layer is resulted from EPR. The main reason of the different functions of the crystallizable ethylene‐propylene copolymers is due to their different compatibility with the PP matrix. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

19.
The performance of white rice husk ash (WRHA) as filler for polypropylene (PP)/ethylene‐propylene‐diene terpolymer (EPDM) thermoplastic elastomer (TPE) composites was investigated. The composites with different filler loadings were prepared in a Brabender plasticorder internal mixer. Both unvulcanized and dynamically vulcanized composites were prepared. Mixing and vulcanization processes of the composites were monitored through the typical Brabender torque‐time curves. The mechanical properties and morphology of the composites were also studied. The Brabender torque curves revealed that the dynamic vulcanization process employed was successful and incorporation of filler has no adverse effect on the processibility of the composites. Incorporation of WRHA improves the tensile modulus and flexural modulus and lowers tensile strength, elongation at break, tear strength, and toughness of both types of composites. Dynamic vulcanization significantly enhances the mechanical and TPE properties of the composites. Dynamic mechanical analysis (DMA) study revealed the existence of two phases in both types of composites. It further shows that neither dynamic vulcanization nor filler agglomeration has played a prominent role in the compatibility of the composites. Thermogravimetric investigation shows that dynamic vulcanization or WRHA loading has not adversely affected the thermal stability of the composites. The scanning electron micrographs provide evidence for the tendency to form filler agglomerates with increasing filler loading, better filler dispersion of dynamically vulcanized composites over unvulcanized composites, and effective vulcanization of elastomer phase of the composites in the presence of filler. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 438–453, 2002  相似文献   

20.
Poly(ethylene‐co‐octene) (PEOc) has been shown to provide a high toughening contribution to isotactic polypropylene (iPP). The theoretical modeling of flow‐induced crystallization (FIC) of blends of iPP and PEOc is not much reported in the literature. The aim of the present work is to clarify the FIC of iPP upon addition of PEOc in terms of theoretical modeling. The crystallization of iPP and PEOc blends in flow is simulated by a modified FIC model based on the conformation tensor theory. Two kinds of flow fields, shear flow and elongational flow, are considered in the prediction to analyze the influence of flow field on the crystallization kinetics of the polymer. The simulation results show that the elongation flow is much more effective than shear flow in reducing the dimensionless induction time of polymer crystallization. In addition, the induction time of crystallization in the blends is sensitive to the change of shear rate. In comparison with experimental data, the modified model shows its validity for the prediction of the induction time of crystallization of iPP in the blends. Moreover, the simulated relaxation time for the blends becomes longer with increasing percentage of PEOc in the blends. Copyright © 2012 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号