首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract

Epoxidised natural rubber (ENR) has been prepared and used as a blending ingredient together with a compatibiliser for blending of natural rubber (air dry sheet, ADS) and cassava starch. Mooney viscosities of the blends were quantified at 100°C and rheological properties in terms of shear stress and shear viscosity were plotted against shear rates. The results showed that pure ENR gave a lower Mooney viscosity, shear stress, and shear viscosity than blends with cassava starch. Mooney viscosity, shear stress, and shear viscosity for the blends increased with increasing levels of starch. At the same level of cassava starch blended, the highest values of these quantities were observed for the blends with ENR. The blend of ADS with ENR as a compatibiliser showed lower values than those of ENR itself, but higher than those of ADS with the starch. The results are described in terms of the level of chemical interaction between polar groups in ENR and in cassava starch. Curing behaviour for compounds of ENR, ADS, and ADS with ENR as a compatibiliser were studied. The results found that ENR exhibited a long delay (~ 10 min) before the vulcanisation took place compared with 1 min for ADS compounds. In the curing curve for ENR, an equilibrium value at maximum torque was not found indicating that the stiffness of the ENR compounds still increased with increasing testing time until 60 min. Stiffness of the ENR compounds also increased with increasing levels of cassava starch.  相似文献   

2.
Graft copolymers of natural rubber (NR) and methyl methacrylate (MMA) were prepared using cumene hydroperoxide and tetraethylene pentamine as redox initiators via the semibatch emulsion polymerization technique. Various molar percentage ratios of NR/MMA were studied in the grafting reaction (i.e., 95/5, 90/10, 80/20, 70/30, and 60/40). The graft copolymer with a 70/30 molar ratio was selected and used to prepare rubber blends with cassava starch. The starch was used at levels of 0, 20, 40, and 60 phr. Another set of rubber blends was prepared for comparison purposes. The NR‐g‐poly(MMA) (PMMA, 75 phr) was blended with 25 phr of NR air dried sheets (ADS) and a given level of the cassava starch. We found that the Mooney viscosity, shear stress, and shear viscosity increased with an increasing concentration of cassava starch. This may be attributed to the chemical interactions between the polar groups of the NR‐g‐PMMA and the cassava starch. The blends were later compounded using a compounding formulation according to ASTM D 3184‐89. A similar short delay onset of vulcanization (i.e., approximately 1 min) was observed for the whole set of compounds under study. However, different curing characteristics were observed for the blends of NR‐g‐PMMA–cassava starch and NR‐g‐PMMA–ADS–cassava starch. The NR‐g‐PMMA–cassava starch compounds exhibited two‐stage curing characteristics. The curing curve had a slight reversion at a testing time of approximately 8 min. The shear modulus then abruptly increased with an increasing testing time in the range of 20–60 min. The curing curves for NR‐g‐PMMA–ADS–cassava starch blends exhibited a single curing stage with a shear modulus that increased slightly with the testing time was increased from 20 to 60 min. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1453–1463, 2003  相似文献   

3.
Novel degradable materials based on ternary blends of natural rubber (NR)/linear low-density polyethylene (LLDPE)/thermoplastic starch (TPS) were prepared via simple blending technique using three different types of natural rubber (i.e., unmodified natural rubber (RSS#3) and ENR with 25 and 50 mol% epoxide). The evolution of co-continuous phase morphology was first clarified for 50/50: NR/LLDPE blend. Then, 10 wt% of TPS was added to form 50/40/10: NR/LLDPE/TPS ternary blend, where TPS was the particulate dispersed phase in the NR/LLDPE matrix. The smallest TPS particles were observed in the ENR-50/LLDPE blend. This might be attributed to the chemical interactions of polar functional groups in ENR and TPS that enhanced their interfacial adhesion. We found that ternary blend of ENR-50/LLDPE/TPS exhibited higher 100 % modulus, tensile strength, hardness, storage modulus, complex viscosity and thermal properties compared with those of ENR-25/LLDPE/TPS and RSS#3/LLDPE/TPS ternary blends. Furthermore, lower melting temperature (T m) and heat of crystallization of LLDPE (?H) were observed in ternary blend of ENR-50/LLDPE/TPS compared to the other ternary blends. Also, neat TPS exhibited the fastest biodegradation by weight loss during burial in soil for 2 or 6 months, while the ternary blends of NR/LLDPE/TPS exhibited higher weight loss compared to the neat NR and LLDPE. The lower weight loss of the ternary blends with ENR was likely due to the stronger chemical interfacial interactions. This proved that the blend with ENR had lower biodegradability than the blend with unmodified NR.  相似文献   

4.
Epoxidized natural rubber (ENR) was prepared using the performic epoxidation method. TPVs based on ENR/PP blends were later prepared by melt‐mixing processes via dynamic vulcanization. The effects of blend ratios of ENR/PP, types of compatibilizers, and reactive blending were investigated. Phenolic modified polypropylene (Ph‐PP) and graft copolymer of maleic anhydride on polypropylene molecules (PP‐g‐MA) were prepared and used as blend compatibilizers and reactive blending components of ENR/Ph‐PP and ENR/PP‐g‐MA blends. It was found that the mixing torque, apparent shear stress and apparent shear viscosity increased with increasing levels of ENR. This is attributed to the higher viscosity of the pure ENR than that of the pure PP. Furthermore, there was a higher compatibilizing effect because of the chemical interaction between the polar groups in ENR and PP‐g‐MA or Ph‐PP. Mixing torque, shear flow properties (i.e., shear stress and shear viscosity) and mechanical properties (i.e., tensile strength, elongation at break, and hardness) of the TPVs prepared by reactive blending of ENR/Ph‐PP and ENR/PP‐g‐MA were lower than that of the samples without a compatibilizer. However, the TPVs prepared using Ph‐PP and PP‐g‐MA as compatibilizers exhibited higher values. We observed that the TPVs prepared from ENR/PP with Ph‐PP as a compatibilizer gave the highest rheological and mechanical properties, while the reactive blending of ENR/PP exhibited the lowest values. Trend of the properties corresponds to the morphology of the TPVs. That is, the TPV with Ph‐PP as a blend compatibilizer showed the smallest rubber particles dispersed in the PP matrix, while the reactive blending of ENR/PP‐g‐MA showed the largest particles. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4729–4740, 2006  相似文献   

5.
The utilization of cassava starch as one of the components in high density polyethylene (HDPE)/natural rubber (NR) blends were investigated. The true challenge in producing new materials based on natural resources is to design materials that could level the mechanical properties of existing conventional polymers. In this study, we have focused on characterizing the HDPE/NR blends incorporated with cassava starch in the form of granulates (native and silanized) as well as plasticized starch. Cassava starch acted as a biodegradation component in the HDPE/NR blends and the incorporation of cassava starch reduced thermal stability and the degree of crystallinity in general. Several series of cassava starch modifications were performed in order to improve the final properties of the blends. Cassava starch was treated with a silane coupling agent, and proved to be effective in improving tensile strength. The better dimensional stability and compatibility between the blend phases were obtained in the silane-treated cassava starch, as observed in the dynamic mechanical analysis results. Cassava starch was also converted into a plasticized form (TPS), and from the results, the degree of TPS adhesion at the inter-phase ofthe HDPE/NR-TPS blend was clearly improved, as indicated in the morphology study. Through the comparison of thermal degradation results, the HDPE/NR/TPS blends proved to be superior to the HDPE/NR/particulate starch counterparts.  相似文献   

6.
Epoxidized natural rubbers (ENRs) with epoxide levels of 10, 20, 30, 40, and 50 mol % were prepared. The ENRs were later blended with poly(methyl methacrylate) (PMMA) with various blend formulations. The mixing torque of the blends was observed. The torque increased as the PMMA contents and epoxide molar percentage increased in the ENR molecules. Furthermore, the shear stress and shear viscosity of the polymer blends in the molten state increased as the ENR content and epoxide molar percentage increased in the ENR molecules. Chemical interactions between polar groups in the ENR and PMMA molecules might be the reason for the increases in the torque, shear stress, and viscosity. All the ENR/PMMA blends exhibited shear‐thinning behavior. This was observed as a decrease in the shear viscosity with an increase in the shear rate. The power‐law index of the blends decreased as the ENR contents and epoxide molar percentage increased in the ENR molecules. However, the consistency index (or zero shear viscosity) increased as the ENR contents and epoxide molar percentage increased. A two‐phase morphology was observed with scanning electron microscopy. The small domains of the minor components were dispersed in the major phase. For the determination of blend compatibility, two distinct glass‐transition‐temperature (Tg) peaks from the tan δ/temperature curves were found. Shifts in Tg to a higher temperature for the elastomeric phase and to a lower temperature for the PMMA phase were observed. Therefore, the ENR/PMMA blends could be described as partly miscible blends. According to the thermogravimetry results, the decomposition temperatures of the blends increased as the levels of ENR and the epoxide molar percentage increased. The chemical interactions between the different phases of the blends could be the reason for the increase. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3561–3572, 2004  相似文献   

7.
Epoxidized natural rubbers (ENR) with various levels of epoxide groups were prepared. Thermoplastic vulcanizates based on 75/25 ENRs/PP blends with Ph‐PP compatibilizer were later prepared by dynamic vulcanization using sulfur curing system. Influence of various levels of epoxide groups on rheological, mechanical morphological properties, and swelling resistance of the TPVs was investigated. It was found that the mixing torque, apparent shear stress, apparent shear viscosity, tensile strength, and hardness properties increased with increasing levels of epoxide groups in the ENR molecules. This may be attributed to increasing level of chemical interaction between the methylol groups of the Ph‐PP molecules and polar functional groups of the ENR molecules. Also, the PP segments in the Ph‐PP molecules are capable of compatibilizing with the PP molecules used as a blend composition. In SEM micrographs, we observed finer dispersion of vulcanized rubber domains as increasing levels of epoxide contents. This corresponds to increasing trend of strength and hardness properties of the TPVs. An increasing trend of tension set and a decreasing trend of elongation at break were observed as increasing levels of epoxide groups in the ENR molecules. This is because of higher rigidity of the vulcanized ENR phase with higher epoxide groups. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3046–3052, 2006  相似文献   

8.
Thermoplastic elastomers based on the blends of thermoplastic polyurethane (TPU) and natural rubber were prepared by a simple blend technique. The influence of the two different types of natural rubber (i.e., unmodified natural rubber (NR) and epoxidized natural rubber (ENR)) on properties of the blends was investigated. The main aim of this study was to improve heat resistance and damping properties, and also to prepare the TPU material with low hardness by blending with various amounts of natural rubber. It was found that the TPU/ENR blends exhibited superior modulus, hardness, shear viscosity, stress relaxation behavior and heat-resistant properties compared to the blends with TPU and unmodified NR. This was attributed to higher chemical interaction between the polar functional groups of ENR and TPU by improving the interfacial adhesion. It was also found that the ENR/TPU blends exhibited finer grain morphology than the blends with unmodified NR. Furthermore, lower tension set, damping factor (Tan ??) and hardness, but higher degradation temperature, were observed in natural rubber/TPU blends compared to pure TPU. This proves the formation of TPU material with high heat resistance, low hardness and better damping properties. However, the blends with higher proportion of natural rubber exhibited lower tensile strength and elongation at break.  相似文献   

9.
Maleated natural rubber (MNR) was prepared and used as a blending composition and a compatibilizer for blending of natural rubber (STR 5L) and cassava starch. The melt rheological behavior in terms of Mooney viscosity, apparent shear stress, and shear viscosity at 100°C were quantified. We found that the pure MNR gave the lower apparent shear stress, shear viscosity than did those of the blends with cassava starch. The rheological data of the MNR blends increased with increasing quantity of cassava starch. The highest value was observed for the blend of MNR. The rheological value was as follows: MNR > STR 5L with MNR (as the compatibilizer) > STR 5L compounds. Furthermore, rheological properties increased with increasing the levels of compatibilizer (MNR). The rheological results were described in terms of intermolecular interaction between the polar groups in the natural rubber and cassava starch molecules. Each rubber blend was compounded, and their curing characteristics were studied. The pure MNR compounds exhibited a long delayed onset of vulcanization for approximately 10 min. The retardation was found, because the accelerator (MBT) reacted with the anhydrides in the compound instead of acting as an accelerator. The retardation was not observed for the compound with the cassava starch. The curing curves for all MNRs were not in equilibrium at a maximum torque, while the pure STR 5L compound gave a curing curve with a maximum torque and a slight reversion. The curing curve for the compound with MNR as the compatibilizer was a combination of the curing curves of MNR and STR 5L. That is, the curve was in equilibrium at the maximum torque and the short delayed action. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 2803–2813, 2001  相似文献   

10.
The aim of this study was to improve the mechanical properties of thermoplastic starch foams prepared from cassava starch blended with natural rubber latex by reactive blending. Potassium persulfate was used as an initiator for graft copolymerization between the starch and natural rubber during baking. The starch–natural rubber graft copolymer (starch‐g‐NR copolymer) was successfully produced during both suspension and melt blending based on 1H‐NMR and FTIR characterization. Natural rubber increased the flexural modulus of starch/natural rubber foams without potassium persulfate, thus indicating the compatibility of the blends. The starch‐g‐NR copolymer, acting as a compatibilizing agent, enhanced the impact strength of foams, but it did not improve the flexural modulus. This may be due to the potassium persulfate decreasing the molecular weight of the natural rubber. Relative humidity also played an important role on the mechanical properties. Foams became more ductile at higher relative humidities. Since foam density increased with an increasing natural rubber content, the specific impact strength was also considered. A soil burial test showed that the cassava starch foams and foams containing 15 pph of natural rubber were fully biodegraded within 8 and 18 weeks, respectively. The starch‐g‐NR copolymer delayed biodegradation of foams and foams containing high natural rubber content, i.e., 35 pph, showed a low ability to be biodegraded. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

11.
Rubber toughened poly(lactic acid) (PLA) was prepared by blending with natural rubber (NR)‐based polymers. The blends contained 10 wt % of rubber and melt blended with a twin screw extruder. Enhancement of impact strength of PLA was primarily concernced. This study was focused on the effect of rubber polarity, rubber viscosity and molecular weight on mechanical properties of the blends. Three types of rubbers were used: NR, epoxidized natural rubber (ENR25 and ENR50), and natural rubber grafted with poly(methyl methacrylate) (NR‐g‐PMMA). Effect of viscosity and molecular weight of NR, rubber mastication with a two‐roll mill was investigated. It was found that all blends showed higher impact strength than PLA and NR became the best toughening agent. Viscosity and molecular weight of NR decreased with increasing number of mastication. Impact strength of PLA/NR blends increased after applying NR mastication due to appropriate particle size. DMTA and DSC characterization were determined as well. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

12.
Attempts have been made to prepare high‐performance bio‐based blends through blending of poly(lactic acid) (PLA) with natural rubber (NR) in the presence of epoxidized natural rubber (ENR) as a compatibilizer. The prepared samples were characterized using differential scanning calorimetry, measuring the tensile properties and impact resistance, scanning electron microscopy, Fourier transform infrared (FTIR) spectroscopy and dynamic mechanical analysis (DMTA). Morphological studies revealed a matrix‐dispersed morphology for all blends, in which the average droplet size significantly decreased with the use of ENR. The elongation at break and impact strength of the blend containing 3 wt% ENR were 45 and 16 times those of neat PLA, respectively. These values are significantly higher than those previously reported for various simple and dynamically vulcanized rubber‐toughened PLAs. The influence of ENR on compatibility was confirmed by rheological tests, FTIR spectra and DMTA. DMTA also showed a marked increase in elastic modulus for the blend in the presence of 3 wt% ENR. The tensile properties and impact resistance were directly dependent on the ENR content and rubber droplet size. © 2018 Society of Chemical Industry  相似文献   

13.
Fully bio‐based soy protein isolate (SPI) resins were toughened using natural rubber (NR) and epoxidized natural rubber (ENR). Resin compositions containing up to 30 wt % NR or ENR were prepared and characterized for their physical, chemical and mechanical properties. Crosslinking between SPI and ENR was confirmed using 1H‐NMR and ATR‐FTIR. All SPI/NR resins exhibited two distinctive drops in their modulus at glass transition temperature (Tg ) and degradation temperature (Td ) at around ?50 and 215 °C, corresponding to major segmental motions of NR and SPI, respectively. SPI/ENR resins showed similar Tg and Td transitions at slightly higher temperatures. For SPI/ENR specimens the increase in ENR content from 0 to 30 wt % showed major increase in Tg from ?23 to 13 °C as a result of crosslinking between SPI and ENR. The increase in ENR content from 0 to 30 wt % increased the fracture toughness from 0.13 to 1.02 MPa with minimum loss of tensile properties. The results indicated that ENR was not only more effective in toughening SPI than NR but the tensile properties of SPI/ENR were also significantly higher than the corresponding compositions of SPI/NR. SPI/ENR green resin with higher toughness could be used as fully biodegradable thermoset resin in many applications including green composites. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44665.  相似文献   

14.
Thermoplastic natural rubber based on polyamide‐12 (PA‐12) blend was prepared by melt blending technique. Influence of blending techniques (i.e., simple blend and dynamic vulcanization) and types of natural rubber (i.e., unmodified natural rubber (NR) and epoxidized natural rubber (ENR)) on properties of the blends were investigated. It was found that the simple blends with the proportion of rubber ~ 60 wt % exhibited cocontinuous phase structure while the dynamically cured blends showed dispersed morphology. Furthermore, the blend of ENR exhibited superior mechanical properties, stress relaxation behavior, and fine grain morphology than those of the blend of the unmodified NR. This is attributed to chemical interaction between oxirane groups in ENR molecules and polar functional groups in PA‐12 molecules which caused higher interfacial adhesion. It was also found that the dynamic vulcanization caused enhancement of strength and hardness properties. Temperature scanning stress relaxation measurement revealed improvement of stress relaxation properties and thermal resistance of the dynamically cured ENR/PA‐12 blend. This is attributed to synergistic effects of dynamic vulcanization of ENR and chemical reaction of the ENR and PA‐12 molecules. Furthermore, the dynamically cured ENR/PA‐12 blend exhibited smaller rubber particles dispersed in the PA‐12 matrix. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
Improvement of the properties of rubber nanocomposites is a challenge for the rubber industry because of the need for higher performance materials. Addition of a nanometer‐sized filler such as silicon carbide (SiC) to enhance the mechanical properties of rubber nanocomposites has rarely been attempted. The main problem associated with using SiC nanoparticles as a reinforcing natural rubber (NR) filler compound is poor dispersion of SiC in the NR matrix because of their incompatibility. To solve this problem, rubber nanocomposites were prepared with SiC that had undergone surface modification with azobisisobutyronitrile (AIBN) and used as a filler in blends of epoxidized natural rubber (ENR) and natural rubber. The effect of surface modification and ENR content on the curing characteristics, dynamic mechanical properties, morphology and heat buildup of the blends were investigated. The results showed that modification of SiC with AIBN resulted in successful bonding to the surface of SiC. It was found that modified SiC nanoparticles were well dispersed in the ENR/NR matrix, leading to good filler‐rubber interaction and improved compatibility between the rubber and filler in comparison with unmodified SiC. The mechanical properties and heat buildup when modified SiC was used as filled in ENR/NR blends were improved. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45289.  相似文献   

16.
《Polymer Composites》2017,38(3):463-471
The goal of this research is to improve poor network structure of polychloroprene rubber (CR)/epoxidized natural rubber (ENR) self‐crosslinking blends, which could substitute traditional vulcanizates in some application area. Carbon black (CB)–CR/ENR blends were prepared by reacting CR with ENR in the presence of CB. The structure of CR/ENR blends was characterized by attenuated total‐reflectance Fourier transform infrared spectroscopy (FTIR‐ATR). The effect of CB loading on curing characterization and mechanical properties of CR/ENR blends was investigated, and the interaction among CR, ENR, and CB was studied using differential scanning calorimetry. The effect of CB loading on the Payne effect of CR/ENR was investigated using rubber process analyzer. Scanning electron microscope was used to characterize the morphology of CB–CR/ENR blends. The results showed that CR/ENR blends were obtained by the ring‐opening reaction of epoxy groups in ENR and chlorine groups in CR. Mechanical properties of CR/ENR blends increased with the increase of CB loading. The Payne effect of CR/ENR became more remarkable with increasing CB loading. Morphology study indicated that interfacial compatibility between CR and ENR increased with the increase of CB loading because CB could strengthen the self‐crosslinking network structure of CR/ENR blends. The promoting effect of CB on self‐crosslinking reaction was verified by the assessment of crosslink density. POLYM. COMPOS., 38:463–471, 2017. © 2015 Society of Plastics Engineers  相似文献   

17.
Natural rubber (NR) was blended with chlorosulfonated polyethylene (CSM) with various formulation and blend ratios (NR/CSM: 80/20 –20/80, wt/wt). Rubber blends were prepared by using a two‐roll mill and vulcanized in a compression mold to obtain the 2 mm‐thick sheets. Tensile properties, tear resistance, thermal aging resistance, ozone resistance, and oil resistance were determined according to ASTM. Compatible NR/CSM blends are derived from certain blends containing 20–30% CSM without adding any compatibilizing agent. Tensile and tear strength of NR‐rich blends for certain formulations show positive deviation from the rule of mixture. Thermal aging resistance depends on formulation and blend ratio, while ozone and oil resistance of the blends increase with CSM content. Homogenizing agents used were Stuktol®60NS and Epoxyprene®25. Stuktol®60NS tends to decrease the mechanical properties of the blends and shows no significant effect on blend morphology. Addition of 5–10 phr of epoxidized natural rubber (ENR, Epoxyprene® 25) increases tensile strength, thermal aging resistance, and ozone resistance of the blends. It is found that ENR acts as a compatibilizer of the NR/CSM blends by decreasing both CSM particle size diameter and α transition temperature of CSM. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 127–140, 2006  相似文献   

18.
The effects of epoxidized natural rubber (ENR‐50) and processing parameters on the properties of natural rubber/ethylene–propylene–diene rubber (NR/EPDM; 70 : 30 phr) blends were studied. The compounds were prepared by melt compounding method. Using response surface methodology of two‐level full factorial, the effects of ENR‐50 contents (?1 : 5 phr; +1 : 10 phr), mixing temperature (?1 : 50°C; +1 : 110°C), rotor speed (?1 : 40 rpm; +1 : 80 rpm), and mixing time (?1 : 5 min; +1 : 9 min) in NR/EPDM blends were evaluated. Cure characteristics and tensile properties were selected as the responses. The significance of factors and its interaction was analyzed using ANOVA and the model's ability to represent the system was confirmed using the constant of determination, R2 with values above 0.90. It was found that the presence of ENR‐50 has the predominant role on the properties of NR/EPDM blends. The addition of ENR‐50 significantly improved cure characteristics and tensile strength up to 5.12% and 6.48% compared to neat NR/EPDM blends, respectively. These findings were further supported by swell measurement, differential scanning calorimetry, and scanning electron microscopy. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40713.  相似文献   

19.
Epoxidized natural rubber/Ethylene vinyl acetate copolymer (ENR‐50/EVA) blends with different ratios were prepared by using a Haake internal mixer. The effect of the blend ratio on the processing, tensile properties (such as tensile strength, elongation at break, Young's modulus and stress–strain behavior), morphology, dynamic mechanical properties, and thermal properties has been investigated. The tensile properties increase with the increase of EVA content, whereas the stabilization torque increases with the increase of ENR‐50 content in the blend. In 40:60 and 50:50 blend of ENR‐50/EVA, both the phases exist as continuous phases, producing a co‐continuous morphology. At these blend ratio, the drastic change in properties were noted, indicating that the phase inversion occurs. The results on dynamic mechanical properties revealed that the blends are compatible. Blending of ENR‐50 and EVA lead to the improvement in thermal stability and 50:50 blend ratios is the most stable blend. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1504–1515, 2006  相似文献   

20.
Conditions were established for dispersing clay nanolayers into both cis‐1,4‐polyisoprene (synthetic) natural rubber (NR) and epoxidized natural rubbers (ENR) having 25 or 50 mol % epoxide. The clay was a sodium montmorillonite and was used as a pristine layered silicate or as organically modified layered silicates to make the galleries more hydrophobic and thus more compatible with the elastomers. The chemical modifications were carried out using an ion‐exchange reaction with alkyl ammonium cations. Incorporation of the clays into the elastomers was achieved by mixing the components themselves in a standard internal blender or by mixing dispersions of them in toluene or methyl ethyl ketone. X‐ray diffraction results indicated intercalation of NR and ENR into the silicate interlayers, followed by exfoliation of the silicate layers into the elastomer matrices. Of primary interest was the effect of the intercalated and exfoliated clays on the mechanical properties of the elastomers. The reinforcing effects obtained were found to depend strongly on the extent of the dispersion of the silicate layers into the rubber matrices. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 1391–1403, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号