首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In this work, blends of poly(butylene terephthalate) (PBT) and linear low‐density polyethylene (LLDPE) were prepared. LLDPE was used as an impact modifier. Since the system was found to be incompatible, compatibilization was sought for by the addition of the following two types of functionalized polyethylene: ethylene vinylacetate copolymer (EVA) and maleic anhydride‐grafted EVA copolymer (EVA‐g‐MAH). The effects of the compatibilizers on the rheological and mechanical properties of the blends have been also quantitatively investigated. The impact strength of the PBT–LLDPE binary blends slightly increased at a lower concentration of LLDPE but increased remarkably above a concentration of 60 wt % of LLDPE. The morphology of the blends showed that the LLDPE particles had dispersed in the PBT matrix below 40 wt % of LLDPE, while, at 60 wt % of LLDPE, a co‐continuous morphology was obtained, which could explain the increase of the impact strength of the blend. Generally, the mechanical strength was decreased by adding LLDPE to PBT. Addition of EVA or EVA‐g‐MAH as a compatibilizer to PBT–LLDPE (70/30) blend considerably improved the impact strength of the blend without significantly sacrificing the tensile and the flexural strength. More improvement in those mechanical properties was observed in the case of the EVA‐g‐MAH system than for the EVA system. A larger viscosity increase was also observed in the case of the EVA‐g‐MAH than EVA. This may be due to interaction of the EVA‐g‐MAH with PBT. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 989–997, 1999  相似文献   

2.
The effects of the blend composition and compatibilization on the morphology of linear low‐density polyethylene (LLDPE)/ethylene vinyl acetate (EVA) blends were studied. The blends showed dispersed/matrix and cocontinuous phase morphologies that depended on the composition. The blends had a cocontinuous morphology at an EVA concentration of 40–60%. The addition of the compatibilizer first decreased the domain size of the dispersed phase, which then leveled off. Two types of compatibilizers were added to the polymer/polymer interface: linear low‐density polyethylene‐g‐maleic anhydride and LLDPE‐g phenolic resin. Noolandi's theory was in agreement with the experimental data. The conformation of the compatibilizer at the blend interface could be predicted by the calculation of the area occupied by the compatibilizer molecule at the interface. The effects of the blend ratio and compatibilization on the dynamic mechanical properties of the blends were analyzed from ?60°C to +35°C. The experiments were performed over a series of frequencies. The area under the curve of the loss modulus versus the temperature was higher than the values obtained by group contribution analysis. The loss tangent curve showed a peak corresponding to the glass transition of EVA, indicating the incompatibility of the blend system. The damping characteristics of the blends increased with increasing EVA content because of the decrease in the crystalline volume of the system. Attempts were made to correlate the observed viscoelastic properties of the blends with the morphology. Various composite models were used to model the dynamic mechanical data. Compatibilization increased the storage modulus of the system because of the fine dispersion of EVA domains in the LLDPE matrix, which provided increased interfacial interaction. Better compatibilization was effected at a 0.5–1% loading of the compatibilizer. This was in full agreement with the dynamic mechanical spectroscopy data. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4526–4538, 2006  相似文献   

3.
In this paper, the implications of melt compatibility on thermal and solid‐state properties of linear low density polyethylene/high density polyethylene (LLDPE/HDPE) blends were assessed with respect to the effect of composition distribution (CD) and branch content (BC). The effect of CD was studied by melt blending a metallocene (m‐LLDPE) and a Ziegler‐Natta (ZN) LLDPE with the same HDPE at 190 °C. Similarly, the effect of BC was examined. In both cases, resins were paired to study one molecular variable at a time. Thermal and solid‐state properties were measured in a differential scanning calorimeter and in an Instron mechanical testing instrument, respectively. The low‐BC m‐LLDPE (BC = 14.5 CH3/1000 C) blends with HDPE were compatible at all compositions: rheological, thermal and some mechanical properties followed additivity rules. For incompatible high‐BC (42.0 CH3/1000 C) m‐LLDPE‐rich blends, elongation at break and work of rupture showed synergistic effects, while modulus was lower than predictions of linear additivity. The CD of LLDPE showed no significant effect on thermal properties, elongation at break or work of rupture; however, it resulted in low moduli for ZN‐LLDPE blends with HDPE. For miscible blends, no effect for BC or CD of LLDPE was observed. The BC of LLDPE has, in general, a stronger influence on melt and solid‐state properties of blends than the CD. Copyright © 2004 Society of Chemical Industry  相似文献   

4.
The effect of the branch content (BC) and composition distribution (CD) of linear low‐density polyethylene (LLDPE) on the thermal and mechanical properties of its blends with LDPE were studied. All blends and pure resins were conditioned in a Haake PolyDrive blender at 190°C and in the presence of adequate amounts of antioxidant. Two metallocene LLDPEs (m‐LLDPE) and one Ziegler–Natta (ZN) hexene LLDPE were melt blended with the same LDPE. The effect of the BC was investigated by blending two hexene m‐LLDPEs of similar weight‐average molecular weights and molecular weight distributions but different BCs with the same LDPE. The effect of the CD was studied by using a ZN and an m‐LLDPE with similar weight‐average molecular weights, BCs, and comonomer type. Low‐BC m‐LLDPE blends showed separate crystallization whereas cocrystallization was observed in the high‐BC m‐LLDPE‐rich blends. However, ZN‐LLDPE/LDPE blends showed separate crystallization together with a third population of cocrystals. The influence of the crystallization behavior was reflected in the mechanical properties. The BC influenced the modulus, ultimate tensile strength, and toughness. The addition of a small amount of LDPE to a low‐BC m‐LLDPE resulted in a major improvement in the toughness, whereas the results for the high‐BC pair followed the additivity rule. ZN‐LLDPE blends with LDPE blends were found to be more compatible and exhibited superior mechanical properties compared to m‐LLDPE counterparts with the same weight‐average molecular weight and BC. All mechanical properties of ZN‐LLDPE blends follow the linear rule of mixtures. However, the CD had a stronger influence on the mechanical properties in comparison to the BC. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 2488–2498, 2005  相似文献   

5.
Moderate cross‐linked blend (LLDPE‐PP) of linear low‐density polyethylene (LLDPE) and polypropylene (PP) with benzoyl peroxide (BPO) were prepared by the reactive melt mixing in HAAKE mixer. Effect of LLDPE‐PP as compatibilizer on the morphology, crystallization behavior and mechanical properties of LLDPE/PP (87/13) blends were studied using scanning electron microscopy (SEM), polarized optical microscopy (POM), wide‐angle X‐ray diffraction (WAXD), differential scanning calorimetry (DSC) and mechanical testing machines. The results showed that LLDPE‐PP not only improved the interfacial adhesion between the LLDPE and PP but also acted as selective nucleating agent for crystal modification of PP. In the blends, the sizes of LLDPE and PP spherulites became smaller, and their melting enthalpies reduced in the presence of LLDPE‐PP. Furthermore, the mechanical properties of LLDPE/PP blends were improved with the addition of LLDPE‐PP, and when the concentration of LLDPE‐PP was 2 phr, the ternary blend had the best mechanical properties. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
Graphene nanoplatelets (GN) produced on a large scale by mechanochemical exfoliation of graphite are incorporated in a co‐continuous ethylene‐vinyl acetate/linear low‐density polyethylene (EVA/LLDPE) blend. Two different processing routes are chosen to selectively place GN in the EVA phase or force its migration to the EVA/LLDPE interface. The results show a drastic decrease in the electrical percolation threshold when the blends are compared to the respective single‐polymer composites. Even with the presence of agglomerates, GN particles are able to migrate to the blend interface and stabilize the morphology and hence the electrical properties. Annealing the insulating samples at processing temperatures causes a drastic increase in conductivity due to continued GN migration and blend morphology coarsening. Semi‐conductive samples, in which a more robust GN network is already established during processing, present no change in morphology but a slight increase in conductivity during annealing. The mechanical performance of the materials is also evaluated and some of the blends with GN present similar elongation at break as pure EVA, but with increased tensile modulus and tensile strength. The electrical performance at different working temperatures shows that the EVA/LLDPE/GN composites are good candidates to act as a semi‐conductive screen material in power cables or as anti‐static materials in electronic devices.  相似文献   

7.
Morphology and properties of poly(butylene terephthalate) (PBT)/nylon 6 (PA6)/EVA‐g‐MAH ternary blends were investigated. The blends were prepared in a corotating, intermeshing, twin‐screw extruder. The incorporation of maleic anhyride (MAH) grafted onto ethylene‐vinyl acetate copolymer (EVA) (EVA‐g‐MAH) in the PBT/PA6 binary blends decreased the tensile and flexural strength but increased the impact strength, while the mechanical properties of the PBT/PA6 blends were decreased with increasing PA6 content regardless of the presence or absence of the EVA‐g‐MAH. The morphology studies of the ternary blends showed gross phase separation. The rheological properties of the ternary blends suggested that excessively high reactivity between amine end groups of PA6 and MAH grafted onto EVA makes the compatibility between PBT and PA6 worse, although EVA‐g‐MAH was expected to work as a compatibilizer for PBT/PA6 blends. The degree of reactivity between functional groups in PBT, PA6, and EVA‐g‐MAH was also examined by investigating the effect of blending sequence on the properties of the ternary blends.  相似文献   

8.
Compatibility mechanisms between EVA and PP copolymers (C‐PP) blends have been studied as a function of the type of copolymer, using a heterophasic PP copolymer (PP‐EP) and a random PP copolymer (PP‐r‐EP), with similar ethylene content. The morphology and thermal and mechanical properties of PP/EVA blends with different levels of EVA containing 28% vinyl acetate (VA) were determined. The obtained results indicated compatibility for both systems showing interactions at the amorphous interfaces; however, this interaction was higher for the PP‐r‐EP/EVA, which showed a single glass transition temperature and changes in the PP crystalline fraction (changes in the fusion temperature and in the diffraction patterns). The evolution of the morphology from isolated spherical domains (20% EVA) to elongated shapes (40% EVA) was related to the observed changes in thermal and mechanical properties. The impact strength and deformation properties showed significant improvement with increasing EVA content above 40% where the highest values of elongation for the PP‐r‐EPand of impact strength for the PP‐EP were obtained. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

9.
Poly(lactic acid)/poly(ethylene‐co‐vinyl acetate)/starch (PLA/EVA/starch) ternary blends were prepared by multi‐step melt processing (reactive extrusion) in the presence of maleic anhydride (MA), benzoyl peroxide and glycerol. The effects of MA and glycerol concentration on the morphology and properties of the PLA/EVA/starch blends were studied using scanning electron microscopy, transmission electron microscopy, atomic force microscopy, the Molau experiment, dynamic mechanical thermal analysis and differential scanning calorimetry etc. The plasticization and compatibilization provided a synergistic effect to these blends accompanied by a significant reduction in starch particle size and an increase in interfacial adhesion. Starch was finely dispersed in the ternary blends with a dimension of 0.5 ? 2 µm. Furthermore, EVA‐coated starch or a starch‐in‐EVA type of morphology was observed for the reactively compatibilized PLA/EVA/starch blends. The EVA with starch gradually changed into a co‐continuous phase with increasing MA concentration. Consequently, the toughness of the blends was improved. Since property stability of starch is an issue, the tensile properties of these blends were measured after different storage times and the blends showed good property stability. Copyright © 2012 Society of Chemical Industry  相似文献   

10.
Uncrosslinked and chemically crosslinked binary blends of low‐ and high‐density polyethylene (PE), with ethylene vinyl acetate copolymer (EVA), were prepared by a melt‐mixing process using 0–3 wt % tert‐butyl cumyl peroxide (BCUP). The uncrosslinked blends revealed two distinct unchanged melting peaks corresponding to the individual components of the blends, but with a reduced overall degree of crystallinity. The crosslinking further reduced crystallinity, but enhanced compatibility between EVA and polyethylene, with LDPE being more compatible than HDPE. Blended with 20 wt % EVA, the EVA melting peak was almost disappeared after the addition of BCUP, and only the corresponding PE melting point was observed at a lowered temperature. But blended with 40% EVA, two peaks still existed with a slight shift toward lower temperatures. Changes of mechanical properties with blending ratio, crosslinking, and temperature had been dominated by the extent of crystallinity, crosslinking degree, and morphology of the blend. A good correlation was observed between elongation‐at‐break and morphological properties. The blends with higher level of compatibility showed less deviation from the additive rule of mixtures. The deviation became more pronounced for HDPE/EVA blends in the phase inversion region, while an opposite trend was observed for LDPE/EVA blends with co‐continuous morphology. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3261–3270, 2007  相似文献   

11.
Polylactide (PLA)/linear low‐density polyethylene (LLDPE), (PLA/LLDPE), blends and nanocomposites were prepared by melt mixing process with a view to fine tune the properties. Two different commercial‐grade nanoclays, Cloisite® 30B (30B) and Cloisite® 15A (15A) were used. A terpolymer of ethylene, butylacrylate (BA) and glycidylmethacrylate (GMA) was used as a reactive compatibilizer. The influence of type of clay on the morphology and mechanical properties of two PLA‐rich and LLDPE‐rich blend systems was studied. Morphological analysis using X‐ray diffraction, transmission electron microscopy, and scanning electron microscopy revealed that the organoclay layers were dispersed largely at the interface of PLA/LLDPE. Decreasing the PLA content changed the morphology from droplet‐in matrix to coarse co‐continuous. In comparison with 30B, due to less affinity of 15A towards compatibilizer and PLA phase, the reduction of the size of dispersed phase was less than that of the equivalent 30B composites. The mechanical results demonstrated that the composites containing both types of organoclay exhibited higher modulus but lower elongation and tensile strength as compared to the neat blends. The injection molded nanocomposites were shown to have the sequential fracture behavior during tensile test. The tensile testing results on the neat blends and nanocomposites showed significant increase in elongation at break and decrease in the modulus as compared with the neat PLA. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 749‐758, 2013  相似文献   

12.
Radiation effects of low‐density polyethylene/ethylene‐vinyl acetate copolymer (LDPE/EVA) blends were discussed. EVA content in the LDPE/EVA blends was an enhancement effect on radiation crosslinking of LDPE/EVA blends, and the highest radiation crosslinking was obtained when the EVA content was reached at 30% when irradiated by γ‐ray in air. The phenomenon was discussed with the compatibility, morphology, and thermal properties of LDPE/EVA blends and found that the enhanced radiation crosslinking of the LDPE/EVA blends was proportional to the good compatibility, the increasing degree of the amorphous region's content of the LDPE/EVA blends, and the vinyl acetate content of EVA. We also found that the vinyl acetate of EVA in the blends is easily oxidized by γ‐ray irradiation in air. The possible radiation crosslinking and degradation mechanism of LDPE/EVA blends was discussed quantitatively with a novel method “step‐analysis” process of irradiated LDPE/EVA blends in the thermal gravimetric analysis (TGA) technique. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1296–1302, 2002  相似文献   

13.
The melt rheological properties of linear low‐density polyethylene (LLDPE)/ethylene vinyl acetate (EVA) blends were investigated with special reference to the effect of blend ratio, temperature, shear rate, compatibilization, and dynamic vulcanization. The melt viscosity of the blends determined with a capillary rheometer is found to decrease with an increase of shear rate, which is an indication of pseudoplastic behavior. The viscosity of the blend was found to be a nonadditive function of the viscosities of the component polymers. A negative deviation was observed because of the interlayer slip between the polar EVA and the nonpolar LLDPE phases. The melt viscosity of these blends decreases with the increased concentration of EVA. The morphology of the extrudate of the blends at different shear rates and blend ratios was studied and the size and distribution of the domains were examined by scanning electron microscopy. The morphology was found to depend on shear rate and blend ratio. Compatibilization of the blends with phenolic‐ and maleic‐modified LLDPE increased the melt viscosity at lower wt % of compatibilizer and then leveled off. Dynamic vulcanization is found to increase the melt viscosity at a lower concentration of DCP. The effect of temperature on melt viscosity of the blends was also studied. Finally, attempts were made to correlate the experimental data on melt viscosity and cocontinuity region with different theoretical models. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3210–3225, 2002  相似文献   

14.
In this study, various poly(ethylene terephthalate) (PET) and linear low‐density polyethylene (LLDPE) with maleic anhydride‐grafted LLDPE (LLDPE‐g‐MAH) compatibilizer were melt blended under an elongational flow. A novel extrusion device, eccentric rotor extruder (ERE), was developed to supply such flow during the process. Including morphology, mechanical properties, melting behavior, and rheological behavior were studied. The morphological study showed that the compatibility between LLDPE and PET was greatly improved with LLDPE loading up to 80 wt %. Mechanical tests indicated that LLDPE could toughen PET to some extent. Moreover, a comparison of samples prepared between ERE and conventional extruder was made and demonstrated the sample prepared by ERE can exhibit better mechanical properties. Differential scanning calorimetry results revealed that PET can promote the crystallinity of LLDPE. Rheological behavior indicated that the complex viscosity of the blends exhibited strong shear thinning phenomenon with increasing LLDPE content, particularly in high‐frequency range blend with the LLDPE weight ratio of 80 wt % was more sensitivity to shear rate than neat LLDPE. The G′‐G″ curves of the blends also revealed that the microstructure of the blends changed significantly with the addition of LLDPE which was consistent with the scanning electron micrographs that PET particles became smaller and distributed more uniform with increasing LLDPE content. Furthermore, the blends showed similar stress relaxation mechanism with adding LLDPE content from 60 to 100 wt %. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46489.  相似文献   

15.
Mechanical properties, molecular weight, X‐ray diffraction, and differential scanning calorimetry (DSC) characterization of blends of virgin high‐density polyethylene (HDPE) with two types of recycled material were investigated. The recycled came from urban plastic waste; one kind was only washed and grounded and the other was extruded and pelletized to remove most of contaminant particles. Starting with the 30/70 virgin/grounded recycled and 50/50 virgin/pelletized recycled blends the recycled content was increased in both blends and compatibilizing agents were used to increase the blend performance. A mixture of phenolic antioxidants and phosphite costabilizers under the name of Recycloblend?, ethylene vinyl acetate (EVA) copolymer, low‐density polyethylene (LDPE), and linear low density polyethylene (LLDPE) were used as compatibilizers. The effect of these additives and the recycled content on the performance of extrusion blow‐molded bottles was determined. The results suggest that blends of virgin/grounded recycled and virgin/pelletized recycled HDPE, in general, were not significantly different among each other and both had a quite similar behavior than the virgin HDPE when compatibilizing agents were used. The addition of compatibilizing agents yielded a material with properties similar to those for the virgin HDPE, helping to reduce the effect of polymers degradation on the rheological and mechanical behavior, with Recycloblend and LLDPE being the most effective for the blends with grounded recycled material, and LLDPE y EVA, for the blends with pelletized recycled. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 3696–3706, 2006  相似文献   

16.
In this article, a hydrolyzed EVA copolymer (EVA‐h) was chosen as an interfacial agent of PA12/EVA blends. The effect of EVA‐h addition (5 and 10 wt% in relation to EVA phase) on morphological, interfacial and mechanical properties of the systems was investigated. The polymer blends were melt processed in an interpenetrating co‐rotating twin‐screen extruder. The EVA‐h practically did not change the continuity index of the blends. However, it resulted in the reduction of the size of the dispersed EVA phase in polyamide. EVA‐h contributed to the reduction of the interfacial tension (4.6 – 0.32 mN/m) and the formation of a stable morphology. The EVA‐h improved the interaction between PA12 and EVA phases, being its effect more pronounced on the elastic modulus and hardness properties. The behavior of the mechanical properties confirmed the compatibilizer effect EVA‐h in the blends. POLYM. ENG. SCI., 58:335–344, 2018. © 2017 Society of Plastics Engineers  相似文献   

17.
The effect of blend composition on the morphology, dynamic mechanical properties, thermal and physico-mechanical properties of linear low density polyethylene (LLDPE)/ ethylene-co-methyl acrylate (EMA) blends were studied. The blend showed both dispersed and continuous phase morphology that depends on the blend composition. A co-continuous structure is formed for blends containing 50 wt% of EMA. Dynamic mechanical studies showed that flexibility of the blend enhanced with the expansion of the amorphous region as EMA content increased. However, two separate melting temperature peak observed in differential scanning calorimetry (DSC) analysis indicate that the blends are immiscible in crystalline region of the two polymers. X-ray diffraction (XRD) studies showed that crystallinity of blends decreases with increase in EMA content and negative deviation of tensile strength from the mixing rule indicates the poor interfacial adhesion between the two components. FTIR spectroscopy established the lack of chemical interaction between LLDPE and EMA, which support the SEM, DSC, DMA and XRD observations. Parallel-Voids model has been applied to characterize phase morphology of these blends.  相似文献   

18.
研究了电子束辐照剂量和氢氧化铝(ATH)的含量对线性低密度聚乙烯(LLDPE)/乙烯-醋酸乙烯酯(EVA)共混物凝胶含量和力学性能的影响。辐照剂量是影响LLDPE/EVA/ATH阻燃体系凝胶含量的主要因素,而ATH对其凝胶含量的影响较小。随着ATH含量的增加,LLDPE/EVA共混物的拉伸强度逐步增加,断裂伸长率迅速下降。所有阻燃体系的拉伸强度均是随着辐照剂量的增加而逐步增大,但辐照剂量对这些阻燃体系的断裂伸长率的影响却比较复杂。  相似文献   

19.
Nanofibrous morphology has been observed in ternary blends of low density polyethylene (LDPE), linear low density polyethylene (LLDPE), and isotactic polypropylene (PP) when these were melt‐extruded via slit die followed by hot stretching. The morphology was dependent on the concentration of the component polymers in ternary blend LDPE/LLDPE/PP. The films were characterized by wide angle X‐ray diffraction (XRD), scanning electron microscopy (SEM), and testing of mechanical properties. The XRD patterns reveal that the β phase of PP is obtained in the as‐stretched nanofibrillar composites, whose concentration decreases with the increase of LLDPE concentration. The presence of PP nanofibrils shows significant nucleation ability for crystallization of LDPE/LLDPE blend. The SEM observations of etched samples show an isotropic blend of LDPE and LLDPE reinforced with more or less randomly distributed and well‐defined nanofibrils of PP, which were generated in situ. The tensile modulus and strength of LDPE/LLDPE/PP blends were significantly enhanced in the machine direction than in the transverse direction with increasing LLDPE concentration. The ultimate elongation increased with increasing LLDPE concentration, and there was a critical LLDPE concentration above which it increased considerably. There was a dramatic increase in the falling dart impact strength for films obtained by blow extrusion of these blends. These impressive mechanical properties of extruded samples can be explained on the basis of the formation of PP nanofibrils with high aspect ratio (at least 10), which imparted reinforcement to the LDPE/LLDPE blend. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

20.
Blends of linear low density polyethylene (LLDPE) and ethene‐propene‐1‐butene copolymer (t‐PP) were obtained through mechanical mixing using a single‐screw extruder with different compositions: 20, 40, 50, 60, and 80 wt % of t‐PP. For this, two types of polyethylene were used: 1‐hexene comonomer and 1‐octene comonomer based. The same blends were prepared in a batch mixer and the torque and temperature were analyzed. The torque showed a decrease with increasing t‐PP content, indicating better processability of the mixture in comparison with LLDPE. The morphology of the blends was analyzed by SEM and showed a composition dependence. The mechanical properties of the blends were evaluated by tensile tests. The results revealed that the best properties were obtained in a 20% t‐PP blend. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1255–1261, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号