首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
4‐Acetamidophenyl acrylate (APA) was synthesized and characterized by IR, 1H and 13C NMR spectroscopies. Homo‐ and copolymers of APA with acrylonitrile (AN) and N‐vinyl‐2‐pyrrolidone (NVP) were prepared by a free radical polymerization. All the copolymer compositions have been determined by 1H NMR technique, and the reactivity ratios of the monomer pairs have been evaluated using the linearization methods Fineman–Ross, Kelen–Tudos, and extended Kelen–Tudos. Nonlinear error‐in‐variable model (EVM) method was used to compare the reactivity ratios. The reactivity ratios for copoly(APA–AN) system were APA(r1) = 0.70 and AN(r2) = 0.333, and for copoly(APA–NVP) system the values were APA(r1) = 4.99 and NVP(r2) = 0.019. Thermal stability and molecular weights of the copolymers are reported. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1919–1927, 2006  相似文献   

2.
N‐Vinyl‐2‐pyrrolidone (V) and vinyl acetate (A) copolymers of different compositions were synthesized by free radical bulk polymerization. The copolymer composition of these copolymers was determined using quantitative 13C{1H} NMR spectra. The reactivity ratios for these comonomers were determined using the Kelen–Tudos (KT) and non‐linear least‐square error‐in‐variable (EVM) methods. The reactivity ratios calculated from the KT and EVM methods are rV = 2.86 ± 0.16, rA = 0.36 ± 0.09 and rV = 2.56, rA = 0.33, respectively. 1H, 13C{1H} and 1H–13C heteronuclear shift correlation spectroscopy (HSQC) and 1H–1H homonuclear total correlation spectroscopy (TOCSY) were used for the compositional and configurational assignments of V/A copolymers. The 13C distortionless enhancement by polarization transfer (DEPT) technique was used to resolve the methine, methylene and methyl resonance signals in the V/A copolymers. © 2002 Society of Chemical Industry  相似文献   

3.
4‐Vinyl pyridine–methacrylonitrile (V/M) copolymers of different composition were prepared by bulk polymerization using benzoyl peroxide as an initiator. The copolymer composition was determined from quantitative 13C{1H}‐NMR spectra. The reactivity ratios for V/M copolymer obtained from a linear Kelen‐Tudos method (KT) and nonlinear error‐in‐variables method (EVM) are rV = 0.79 ± 0.12, rM = 0.38 ± 0.09 and rV = 0.79 ± 0.13, rM = 0.38 ± 0.07, respectively. The complete spectral assignment in term of compositional and configurational sequences of these copolymers were done with the help of distortionless enhancement by polarization transfer (DEPT), two‐dimensional heteronuclear single quantum coherence spectroscopy (HSQC). Total correlated spectroscopy (TOCSY) experiment was used to assign the various three‐bond 1H‐1H couplings in the V/M copolymer. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 3232–3238, 2003  相似文献   

4.
Monomer reactivity ratios are important parameters used in copolymerization kinetics to predict the rate of polymerization, copolymer composition and monomer sequence length, and by extension, molecular weight and distribution of the final product. Batch aqueous solution copolymerizations of acrylic acid (AA) and itaconic acid (IA) are performed at various feed compositions. Polymerizations are categorized into low (<11 wt %) conversion and higher (< 30 wt %) conversion data sets for analysis. Due to the limited solubility of IA in the reaction mixture, the feed composition of IA in all polymerizations is constrained to lower than 25 mol %. Conversion is determined by gravimetric methods, and copolymer composition via 1H‐NMR spectroscopy. All data are analyzed using the error‐in‐variables model (EVM) method. Two analyses are used, one with the EVM approach and another with a novel Direct Numerical Integration (DNI) coupled with the EVM method. The DNI/EVM approach yields values of rAA = 0.36 and rIA = 1.62 for the reactivity ratios. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44014.  相似文献   

5.
The copolymerization reactivity ratios of acrylic acid and acrylamide are found at pH 5 and pH 2. Automatic continuous online monitoring of polymerization reactions (ACOMP) has been used for the first time to monitor the synthesis of polyelectrolytic copolymers. The composition drift during the reactions revealed that at pH 5, the acrylamide participates more in the copolymer, and at pH 2, the acrylic acid incorporates in the system at a higher ratio. The copolymerization data were analyzed by a recent error in variables (EVM) type calculation method developed for obtaining the reactivity ratios by on‐line monitoring and gave at pH 5 reactivity ratios rAam = 1.88 ± 0.17, rAac = 0.80 ± 0.07 and at pH 2 rAam = 0.16 ± 0.04, rAac = 0.88 ± 0.08. The results show that the reactivity ratios depend strongly on the pH of the medium. The effect of polyelectrolytic interactions on the reactivity ratios is discussed in detail. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 968–974, 2007  相似文献   

6.
The radical copolymerization of styrene with methacrylic acid (MAA) initiated by triphenylbismuthonium 1,2,3,4‐tetraphenylcyclopentadienylide in dioxan at 80 ± 0.1 °C for 3 h results in the formation of alternating copolymer as evidenced from the values of reactivity ratios as r1 (styrene) = 0.03 and r2 (MAA) = 0.025. The kinetic expression is Rp α [I]0.5 [Sty] [MAA] and overall energy of activation is computed to be 23 kJ/mol. The FTIR spectrum of the copolymer shows the presence of bands at 3054 cm?1 assigned to the phenyl group of styrene and at 1724 cm?1 assigned to the ? COOH group of MAA. The 1H‐NMR spectrum of the copolymer shows peaks between 7.20 and 7.27 δ assigned to the phenyl protons of styrene and at 12.5 δ assigned to the COOH proton of MAA. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1838–1843, 2005  相似文献   

7.
Copolymers of N‐acryloylcarbazole (A) and vinyl acetate (V) were synthesized by bulk polymerization using benzoyl peroxide (BPO) as free‐radical initiator at 65°C in different in‐feed ratios. The composition of the copolymer was determined by 1H‐NMR spectrum. The comonomer reactivity ratios, determined by Kelen–Tudos (KT) and nonlinear error‐in‐variables (EVM) methods, were rA= 16.75 ± 1.38, rV = 0.015 ± 0.002, and rA = 16.36, rV = 0.015, respectively. Complete spectral assignments of the 1H and 13C{1H} NMR spectra of the copolymers were done by the help of distortionless enhancement by polarization transfer (DEPT) and two‐dimensional NMR techniques such as heteronuclear single quantum coherence (HSQC) and total correlation spectroscopy (TOCSY). The methine and methylene carbon resonances were found to be compositional as well as configurational sensitive. The signals obtained were broad pertaining to the restricted rotation of bulky carbazole group. The thermal stability and glass‐transition temperatures (Tg) of the copolymers were found to be dependant on polymer composition and characteristic of rotational rigidity of the polymer chain. Variation in the values of Tg with the copolymer composition was found to be in good agreement with theoretical values obtained from Johnston and Barton equations. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2720–2733, 2007  相似文献   

8.
Copolymerizations of butadiene (Bd) with styrene (St) were carried out with catalytic systems composed of a rare‐earth compound, Mg(n‐Bu)2 (di‐n‐butyl magnesium) and halohydrocarbon. Of all the rare earth catalysts examined, Nd(P507)3–Mg(n‐Bu)2–CHCl3 showed a high activity in the copolymerization under certain conditions: [Bd] = [St] = 1.8 mol l?1, [Nd] = 6.0 × 10?3 mol l?1, Mg/Nd = 10, Cl/Nd = 10 (molar ratio), ageing for 2 h, copolymerization at 50 °C for 6–20 h. The copolymer of butadiene and styrene obtained has a relatively high styrene content (10–30 mol%), cis‐1,4 content in butadiene unit (85–90%), and molecular weight ([η] = 0.8–1 dL g?1). Monomer reactivity ratios were estimated to be rBd = 36 and rSt = 0.36 in the copolymerization. © 2002 Society of Chemical Industry  相似文献   

9.
Free radical copolymerization kinetics of 2‐(diisopropylamino)ethyl methacrylate (DPA) with styrene (ST) or methyl methacrylate (MMA) was investigated and the corresponding copolymers obtained were characterized. Polymerization was performed using tert‐butylperoxy‐2‐ethylhexanoate (0.01 mol dm?3) as initiator, isothermally (70 °C) to low conversions (<10 wt%) in a wide range of copolymer compositions (10 mol% steps). The reactivity ratios of the monomers were calculated using linear Kelen–Tüd?s (KT) and nonlinear Tidwell–Mortimer (TM) methods. The reactivity ratios for MMA/DPA were found to be r1 = 0.99 and r2 = 1.00 (KT), r1 = 0.99 and r2 = 1.03 (TM); for the ST/DPA system r1 = 2.74, r2 = 0.54 (KT) and r1 = 2.48, r2 = 0.49 (TM). It can be concluded that copolymerization of MMA with DPA is ideal while copolymerization of ST with DPA has a small but noticeable tendency for block copolymer building. The probabilities for formations of dyad and triad monomer sequences dependent on monomer compositions were calculated from the obtained reactivity ratios. The molar mass distribution, thermal stability and glass transition temperatures of synthesized copolymers were determined. Hydrophobicity of copolymers depending on the composition was determined using contact angle measurements, decreasing from hydrophobic polystyrene and poly(methyl methacrylate) to hydrophilic DPA. Copolymerization reactivity ratios are crucial for the control of copolymer structural properties and conversion heterogeneity that greatly influence the applications of copolymers as rheology modifiers of lubricating oils or in drug delivery systems. © 2015 Society of Chemical Industry  相似文献   

10.
Copolymerization of styrene and 2‐hydroxyethyl methacrylate (2‐HEMA) was carried out in a microemulsion medium. The composition of the copolymers was estimated using proton 1H‐NMR. The reactivity ratios of styrene and 2‐HEMA in ternary microemulsions were observed and were considerable different from those reported for solution and bulk polymerization. In monomer pairs with a considerable difference in polarity, partitioning of a monomer between the aqueous phase and the microemulsion droplets develops a concentration gradient, which can be calculated from the distribution coefficient of the monomer between the two phases. This approach has led to more reliable reactivity ratios for the monomers. The study of styrene–2‐HEMA copolymerization in a sodium dodecylsulfate‐based microemulsion resulted in rS = 3.79 and rH = 0.17 as apparent reactivity ratios and rS = 0.57 and rH = 23.24 as true reactivity ratios for styrene and 2‐HEMA, respectively. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1832–1837, 2002; DOI 10.1002/app.10401  相似文献   

11.
Radiation polymerization of acrylonitrile in a viscous system with styrene was performed at ambient temperature by using γ‐rays. It is found that the overall rate of polymerization was accelerated after critical conversion due to the gel effect. As the molar fraction of styrene in monomer feed (fSt) is increased, both the total polymer conversion and molar fraction of acrylonitrile in the copolymer feed (FAN) were decreased. The monomer reactivity ratios for acrylonitrile and styerne were determined to be r1 (AN) = 0.25 and r2 (St) = 2.0, respectively. The copolymers obtained were characterized by Fourier transformed infrared spectra (FTIR), X‐ray diffraction (XRD), scanning electron microscopy (SEM), 1H‐NMR, and pyrolysis mass spectrometry (PMS). It was found that the slight addition of styrene to acrylonitrile strongly changes crystallinity, morphology, and thermal decomposition of the resulting polymer. 1H‐NMR measurment of AN/St copolymer showed the appearance of aromatic proton signals and shifted the resonance of the methylene proton to lower chemical shifts. The mass spectra of AN/St copolymers showed fragments of pyrolysates corresponding to oligonitriles with styrene end groups. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 268–275, 2002; DOI 10.1002/app.10324  相似文献   

12.
Copolymerization reactions of di-(tri-n-butyltin) itaconate with styrene and methyl methacrylate were carried out in solution at 70°C using 1 mol% azobisisobutyronitrile as a free radical initiator. The copolymer compositions were determined by chemical analysis as well as from 1H-NMR data. The monomer reactivity ratios for copolymerizations of di-(tri-n-butyltin) itaconate with styrene and methyl methacrylate have been found to be r1 = 0.228, r2 = 0.677, and r1 = 0.220, r2 = 1.635, respectively. The sequence distribution of the triad fractions were calculated from reactivity ratios and compared with those obtained from 1H-NMR data.  相似文献   

13.
Atom transfer radical bulk copolymerization of styrene (St) and methyl acrylate (MA) initiated with trichloromethyl‐terminated poly(vinyl acetate) macroinitiator was performed in the presence of CuCl/PMDETA as a catalyst system at 90°C. Linear dependence of ln[M]0/[M] versus time data along with narrow polydispersity of molecular weight distribution revealed that all the homo‐ and copolymerization reactions proceed according to the controlled/living characteristic. To obtain more reliable monomer reactivity ratios, the cumulative average copolymer composition at moderate to high conversion was determined by 1H‐NMR spectroscopy. Reactivity ratios of St and MA were calculated by the extended Kelen‐Tudos (KT) and Mao‐Huglin (MH) methods to be rSt = 1.018 ± 0.060, rMA = 0.177 ± 0.025 and rSt = 1.016 ± 0.053, rMA = 0.179 ± 0.023, respectively, which are in a good agreement with those reported for the conventional free‐radical copolymerization of St and MA. Good agreement between the theoretical and experimental composition drifts in the comonomer mixture and copolymer as a function of the overall monomer conversion were observed, indicating that the reactivity ratios calculated by copolymer composition at the moderate to high conversion are accurate. Instantaneous copolymer composition curve and number‐average sequence length of comonomers in the copolymer indicated that the copolymerization system tends to produce a random copolymer. However, MA‐centered triad distribution results indicate that the spontaneous gradient copolymers can also be obtained when the mole fraction of MA in the initial comonomer mixture is high enough. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
Styrene/methacrylic acid copolymers were prepared by free-radical photopolymerization using the uranyl nitrate ion as the initiator. The copolymer composition was determined from 1H-NMR spectroscopy. The comonomer reactivity ratios determined using Kelen Tudos and nonlinear error in variable methods (EVM) are rm = 0.61 ± 0.05 and rs = 0.14± 0.07. The broad and overlapping 1H-NMR spectrum was assigned using the help of 2D TOCSY and NOESY experiments. These methods were used to ascertain the various geminal, vicinal, and spatial couplings between the protons. The methyl and methine protons also show configurational and compositional sensitivity. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 2444–2453, 2001  相似文献   

15.
As for the charge‐transfer complex (CTC) formed by N‐butyl maleimide (NMBI) and styrene in chloroform, the complex formation constant was determined by 1H‐NMR of Hanna–Ashbaugh. The copolymerization of NBMI (NBMI, M1) and styrene (St, M2) in chloroform using AIBN as an initiator was investigated. On the basis of the kinetic model proposed by Shan, the reactivity ratios of free monomers and CTC in the copolymerization were calculated to be r12 = 0.0440, r21 = 0.0349, r1C = 0.00688, r2C = 0.00476, and the ratios of rate constants were obtained to be k1C/k12 = 6.40, k2C/k21 = 7.33. In addition, the copolymer was characterized by IR, 1H‐NMR, DSC, and TGA. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 3007–3012, 2002; DOI 10.1002/app.2330  相似文献   

16.
Self-associating copolymers of methacrylic acid (MAA) with poly (ethylene glycol) monomethacrylate (PEGMA) were prepared by free radical copolymerization of MAA with PEGMA using dispersion polymerization in D2O, or solution polymerization in a 50/50 ethanol–D2O mixture. These copolymers have been studied as components of reversible hydrogels1 and in medical applications.2 In order to understand the relationship between the copolymer structure and its performance, it is important to determine the sequence distribution of the copolymer. The copolymer architecture is determined by the reactivity ratios and integrated instantaneous feed compositions. The reactivity ratios were determined using the first-order Markov method3 by running a series of reactions at various initial monomer ratios and determining the monomer incorporation into the copolymer as a function of time, via 1H nuclear magnetic resonance. The reactivity ratios for dispersion copolymerizations of MAA with PEGMA in water were determined to be r1 = 1.03 and r2 = 1.02, whereas solution copolymerization in 50/50 EtOH–H2O gave reactivity ratios of r1 = 2.0 and r2 = 3.6. These results show that the reactivity ratios and copolymer architecture are influenced by the solvent system. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68: 1019–1025, 1998  相似文献   

17.
Acrylonitrile–styrene–methyl methacrylate (A–S–M) terpolymers were prepared by photopolymerization using uranyl nitrate ions as photo initiators, which were analyzed by NMR spectroscopy. The terpolymer compositions were determined by Goldfinger's equation using comonomer reactivity ratios: ras = 0.04; rsa = 0.31; ram = 0.17, rma = 1.45; rsm = 0.52; rms = 0.47. The terpolymer compositions were also determined from the quantitative 13C(1H)‐NMR spectroscopy. The sequence distribution of the acrylonitrile‐, styrene‐, and methyl methacrylate–centered triads were determined from the 13C(1H)‐NMR spectra of the terpolymers and are in good agreement with triad concentrations calculated from the statistical model. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 3026–3032, 1999  相似文献   

18.
Alternating copolymers, containing styrene and citronellol sequences, have been synthesized by radical polymerization using benzoylperoxide (BPO)–p‐acetylbenzylidenetriphenyl arsoniumylide (pABTAY) as initiator, in xylene at 80 ± 1 °C for 3 h under inert atmosphere. The kinetic expression is Rp ∝ [BPO]0.88 [citronellol]0.68 [styrene]0.56 with BPO and Rp ∝ [pABTAY]0.27 [citronellol]0.76 [styrene]0.63 with pABTAY, ie the system follows non‐ideal kinetics in both cases, because of primary radical termination and degradative chain transfer reactions. The activation energy with BPO and pABTAY is 94 kJ mol?1 and 134 kJ mol?1, respectively. Different spectral techniques, such as IR, FTIR, 1H NMR and 13C NMR, have been used to characterize the copolymer, demonstrating the presence of alcoholic and phenyl groups of citronellol and styrene. The alternating nature of the copolymer is shown by the product of reactivity ratios r1 (Sty) = 0.81 and r2 (Citro) = 0.015 using BPO and r1 (Sty) = 0.37 and r2 (Citro) = 0.01 using (pABTAY), which are calculated by the Finemann–Ross method. A mechanism of copolymerization is proposed. © 2001 Society of Chemical Industry  相似文献   

19.
The chemical microstructure of acrylonitrile–pentyl methacrylate (A–P) copolymers prepared by photopolymerization using uranyl ion as the photo sensitizer is analyzed by 13C{1H} nuclear magnetic resonance spectroscopy. The composition of the copolymers were determined by elemental analysis, and comonomer reactivity ratios were determined by the Kelen–Tudos (KT) and the error in variable (EVM) methods. The terminal model reactivity ratios obtained from the EVM method are rA = 0.20 and rP = 2.62. The complete spectral assignment of the overlapping proton and carbon spectra of these copolymers were done with the help of distortionless enhancement by polarization transfer and two-dimensional 1H–13C heteronuclear shift correlation (inverse HETCOR) spectroscopy. The assignment of the various conformational and configurational sequences in the proton spectrum were made possible by two-dimensional correlated spectroscopy and total correlation spectroscopy experiments. Monte Carlo simulation was used to study the effect of the degree of polymerization on the triad fractions. © 1998 John Wiley & Sons, Inc. J Appl Polm Sci 69: 2507–2516, 1998  相似文献   

20.
In this study, methyl oleate was bromoacrylated in the presence of N‐bromosuccinimide and acrylic acid in one step. Homopolymers and copolymers of bromoacrylated methyl oleate (BAMO) were synthesized by free radical bulk polymerization and photopolymerization techniques. Azobisisobutyronitrile (AIBN) and 2,2‐dimethoxy‐2‐phenyl‐acetophenone were used as initiators. The new monomer BAMO was characterized by FTIR, GC‐MS, 1H, and 13C‐NMR spectroscopy. Styrene (STY), methylmethacrylate (MMA), and vinyl acetate (VA) were used for copolymerization. The polymers synthesized were characterized by FTIR, 1H‐NMR, 13C‐NMR, and differential scanning calorimetry (DSC). Molecular weight and polydispersities of the copolymers were determined by GPC analysis. Ten different feed ratios of the monomers STY and BAMO were used for the calculation of reactivity ratios. The reactivity ratios were determined by the Fineman–Ross and Kelen–Tudos methods using 1H‐NMR spectroscopic data. The reactivity ratios were found to be rsty = 0.891 (Fineman–Ross method), 0.859 (Kelen–Tudos method); rbamo = 0.671 (Fineman–Ross method), 0.524 (Kelen–Tudos method). © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 2475–2488, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号