首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
城市污泥耦合锯末共热解特性及动力学分析   总被引:1,自引:0,他引:1  
为实现城市污水污泥与锯末共热解的工业应用,利用热重分析仪对污泥耦合锯末共热解过程进行了实验与理论研究,揭示了锯末添加比例、升温速率对污泥热解特性的影响,并基于Coats-Redfern法,结合20种常见固体热解机理函数确定了污泥耦合锯末共热解过程最优热解动力学模型。结果表明:锯末相比污泥具有更低的表观活化能,最大失重速率是污泥的4倍;锯末的添加使得热重分析(TG)曲线向下偏移,最大失重速率明显增大,挥发份析出特性变强;随着升温速率的增大,固态残渣增加,最大失重速率减小,不利于热解反应的进行;按7∶3比例混合的污泥锯末耦合热解微分热重分析(DTG)曲线峰前(230~350℃)表观活化能为38.81 k J/mol,最优动力学模型为D_5-3D扩散模型;峰后(350~500℃)表观活化能为29.93 k J/mol,最优动力学模型为C~2-化学反应模型。  相似文献   

2.
采用热重分析法对市政污泥、木屑及其不同比例的混合样品热解特性进行了分析,研究了升温速率和混合比例对热解过程的影响。对污泥和木屑进行单独热解时,木屑比污泥的反应活性更高;随着升温速率的增大,二者的挥发分析出指数D均有增大,但升温速率对污泥挥发分析出的影响更大;污泥与木屑共热解改善了污泥热解过程的综合热解释放特性,有利于热解反应的进行;随木屑添加比例的增加D值呈指数增长,在木屑添加比例为80%时,D达到最大值118.18×10-8,但仍低于理论值141.67×10-8,说明存在竞争作用。文章采用FWO(Flynn-Wall-Ozawa)和Starink方法,分别计算木屑添加比例为80%的共热解表观活化能。当转化程度α为0.1~0.8时活化能变化较小,α为0.9时活化能分别突增到761.64,786.12 kJ/mol。这说明共热解过程可分为150~520℃和520~1 000℃两个温度阶段,与污泥单独热解相比,降低了转化率达到90%时的终温。  相似文献   

3.
采用差热-热重分析法对不同反应条件下的制药污泥热解特性及动力学规律展开研究。结果表明:制药污泥的热解过程经历失水、有机物分解和碳化3个阶段;制药污泥在不同升温速率(5、10和20℃/min)下的TG(热重分析)和DTG(TG的一次微分)曲线的趋势大致相同,但是随着升温速率的增加,TG和DTG曲线向高温区移动。通过FLynnWall-Ozawa法和atava-esták法对污泥主要反应阶段进行热解动力学分析,得出当转化率为0.9时,活化能最大为150.75 kJ/mol;当转化率为0.6时,活化能最小为68.93 k J/mol;污泥的热解反应在280~360℃时的活化能为85.67kJ/mol,最概然机理函数为[-ln(1-α)]~3;在640~700℃时的活化能150.42 kJ/mol,最概然机理函数为(1-α)~(-1)-1。  相似文献   

4.
采用热重分析仪与傅里叶红外光谱仪对城市污水污泥进行实验,考察了反应过程及逸出气体产物,求解了热解表观动力学参数。研究表明,污泥样品在N2、CO2和N2+O2气氛中分别发生的热解、气化和燃烧反应,反应过程的特征参数不同;在N2中主要热解温度范围为200~560℃,反应过程在600℃基本完成;随着升温速率增加,热解最大失重速率提高;污泥样品在N2中的热解过程依次析出H2O、CO2、CH4和CO等气体;污泥样品热解不同反应阶段具有不同反应机理和动力学参数,表观活化能在60~100 kJ/mol范围内。  相似文献   

5.
将杨木屑在不同升温速率(10℃/min,15℃/min,20℃/min,25℃/min和30℃/min)下进行热解,基于TG和DTG、温度特征值、失重率及热解产物产率分析不同升温速率下杨木屑的热解规律,利用FWO法计算热解动力学参数,对精制后的焦油进行GC-MS检测,分析其主要有机成分及变化规律。实验表明,杨木屑样品主要失重的温度区间为210~400℃。杨木屑的失重率与升温速率成正比,升温速率的提高会导致温度延迟现象加重。由FWO法求得杨木屑样品的热解反应活化能平均值为129.9kJ/mol。热解产物产率表明,升温速率提高,固相和气相产物产率降低,液相产物产率提高。GC-MS检测结果表明,精制后的焦油主要成分为醇类、苯酚类、酯类、醛类、酸类、糖类、吡啶、烯烃类等有机化合物,其中随着升温速率的提高,酚类、酸类、醇类和醛类的相对含量下降但酚类的表现最为明显。  相似文献   

6.
通过TG-DSC实验,研究微波辐射对污泥热解特性的影响,与污泥-生物质混合热解特性作对比,并利用Coats-Redfern积分法计算出污泥热分解反应的表观活化能、反应级数及指前因子.结果表明,在辐射剂量为10 W/g、20 W/g和25 W/g的条件下,污泥TG实验的失重率分别提高了4.6%、5.7%和1 1.6%;热解反应的活化能分别降低了19.2 kJ/(mol·K)、2.6 kJ/(mol·K)、12.7 kJ/(mol·K),平均降低了24%,反应级数略有变化.在10 K/min升温速率下,添加质量分数为5%的木屑或麦秆,污泥热解失重率分别为4.7%和8.9%.  相似文献   

7.
利用热重分析仪对象草的热解特性进行研究,考察不同升温速率和金属盐氯化钙对象草热解的影响.结果表明,象草主热解阶段发生在450~650K之间.在高温区域(903K)得到趋于稳定的半焦产量,约为26%.添加10%氯化钙后,象草热解得到的固体残留物有所减少.采用Popescu法对象草和添加氯化钙象草的主热解阶段进行动力学求解,其反应机理函数均符合Avrami-Erofeev方程,象草热解活化能为190~219kJ/mol.氯化钙的催化效果明显,象草热解活化能和指前因子大幅度降低,当转化率在0.2~0.3时活化能降幅最大,降低了59kJ/mol.  相似文献   

8.
为解决陆地生物质资源短缺,开发水生生物质有效替代部分陆地生物质迫在眉睫。通过热重法研究玉米秸秆和海藻共同热解的特性,重点考察掺混比例和升温速率的影响,并对混合样品的热力学特性和动力学特性进行分析。结果显示,热解分为干燥、挥发分析出及焦炭热解三个阶段。掺配后的混合样品最终失重率与最大失重速率均小于纯秸秆与纯海藻。随着海藻掺配比例的增加,可燃性指数Ca先增大后减小,燃尽特性指数K递减,热解特性指数S先增大后减小。不同升温速率工况下,在热解区间(200~600℃),随着升温速率的升高,样品的热重曲线右移,失重率越来越大,最大失重速率先减小后增大,30℃/min时最小。Ca在递减,K、S呈增加趋势。动力学研究结果表明,不同掺配比例工况下,混合样品存在明显的协同作用,降低了共热解所需活化能。在不同升温速率工况下,升温速率越大,所需要的活化能越小,样品越容易发生热解。  相似文献   

9.
采用热重分析研究了水华蓝藻在不同升温速率(5,10,15,20℃/min)下的热解特性。通过等转化率法计算了蓝藻热解的反应活化能,并利用主曲线法判断得出其热解动力学机理函数。结果表明:蓝藻主要的热解阶段发生在170~530℃,随着升温速率提高,最大失重速率升高,而最大失重峰向高温缓慢偏移。当转化率为0.2~0.7时,反应活化能基本保持不变(平均值为169.71 kJ/mol),说明此阶段热解过程能够用单一的机理模型描述。当n=5.3时,实验曲线与标准曲线拟合的线性相关系数R2=1,说明热解反应级数为5.3,计算得到指前因子为7.24×1021s-1,热解反应可以表示为da/dt=3.62×1020exp(-169.71/RT)·(1-α)5.3。  相似文献   

10.
通过热重分析手段研究了杜氏盐藻在室温至900℃下的热解行为和特性,采用高纯氮气作保护气,升温速率分别为5℃/min、10℃/min、20℃/min和40℃/min.TG、DTG曲线的分析表明,热解过程随温度升高经历3个不同阶段.此外,随着升温速率增大,热解的初始温度和峰值温度均增大,且总失重增加.采用等转化速率法和主曲线法对盐藻热解过程进行动力学分析.结果表明,表观热解反应遵循单一动力学机理模型,反应动力学过程为简单级数反应机理模型Fn.求得热解反应表观平均活化能Ea为146.3 kJ/mol,指前因子A为4.28×1013s-1,指数n为2.4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号