共查询到20条相似文献,搜索用时 0 毫秒
1.
Polyurethane foams were prepared from the liquefied cornstalk polyol, which was obtained by the liquefaction of cornstalk in the presence of polyhydric alcohols using sulfuric acid as catalyst. The advisable liquefaction reaction conditions were selected by investigating their influences on the properties of liquefied cornstalk polyol, taking account of the requirement for the preparation of appropriate polyurethane foams. The influences of the contents of catalysts, water, surfactant, and isocyanate on the properties of polyurethane foams were also discussed, and feasible formulations for preparing cornstalk‐based polyurethane foams were proposed. The results indicated that the foams prepared from such liquefied cornstalk polyol exhibited excellent mechanical properties and thermal properties, and could be used as heat‐insulating materials. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
2.
Glycolysis reaction kinetics of methylene diphenyl diisocyanate‐based water‐blown polyurethane foams was examined by gel permeation chromatography. Glycolysates were reacted with butyl glycidyl ether to convert toxic aromatic amines to polyols, and their products were identified by 1H‐NMR spectroscopy. To examine the quality of recycled polyol, polyurethane foams were reprepared using the virgin and recycled polyol mixtures with varying compositions. Cell structures and sizes of reprepared foams were similar to those of original ones when the recycled polyols were mixed up to 30 wt %. Density, thermal conductivity, and flexural strength of the reprepared foams were compared with those of the original ones, and no difference was observed below the recycled polyol concentration of 30 wt %. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2646–2656, 2000 相似文献
3.
An hydroxyl‐terminated quaternary ammonium salt polymer (QAP) was added to a foam formulation in various amounts between 1 and 5 wt %. The structures of the produced foams and their QAP content were characterized by Fourier transform infrared and EDXRF analyses. A linear polymer of QAP with a diisocyanate was also synthesized to support our investigations. The morphological changes such as the cell size and the cell structure of the produced foams were observed with scanning electron microscopy. Thermogravimetric analysis and dynamic mechanical analysis analyses were applied to examine the thermal and thermomechanical properties of the produced foams. Relatively low amount of QAP‐added foams showed very similar structural and thermomechanical properties to the unmodified foams. In addition, while the unmodified foams did not show any antimicrobial activity, the QAP‐added foams provided significant inactivation against Staphylococcus aureus, yeast and mold at concentrations of about 102 and 103 CFU within 5 h of contact time. The results showed that the addition of minute amount of QAP can significantly improve the biocidal performance of the produced foams without deteriorating their structure. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45914. 相似文献
4.
Rigid polyurethane foams (PUFs) were prepared from polymeric 4,4′‐diphenylmethane diisocyanate, polyester polyol, 1,4‐butane diol, silicone surfactant, hydrochlorofluorocarbon (HCFC) 141B, and distilled water. The properties and structure of the PUFs were investigated with differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and a universal testing machine. The density of the PUF blown by distilled water and/or HCFC 141B decreased from 175.7 to 28.2 kg/m3 with an increase of blowing agents. From the SEM results, the average cell size of the PUF blown by distilled water increased from 150 to 290 μm with the distilled water content. From the DSC results, the glass‐transition temperature (Tg) of the PUF blown by distilled water increased from 85.7 to 101.7°C with increasing distilled water content, whereas the Tg of the PUF blown by HCFC 141B remained unchanged with HCFC 141B content. The compressive strength and modulus of the PUF blown by a mixture of distilled water and HCFC 141B was increased from 0.13 to 0.25 MPa and from 3.00 to 7.23 MPa, respectively, with the distilled water content at the sample density of about 44.0 kg/m3. The increase of the compressive strength and modulus of the PUF at the same density was related to the increase of the Tg from 86.0 to 100.9°C. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 486–493, 2001 相似文献
5.
The effect of sodium dihydrogenphosphate, trisodium pyrophosphate, and sodium aluminocarbonate on the thermal decomposition of rigid polyurethane (PUR) foams, based on diphenylmethane‐4,4‐diisocyanate, diphenyl‐2,2‐propane‐4,4‐dioxyoligo(ethylene oxide), and oxyalkylenated toluene‐2,6‐diamine, blown with pentane, was studied. Thermogravimetric (TG) data have shown that there is a stabilization effect of additives in the initial stage of degradation, both in nitrogen and air atmosphere, and the decomposition proceeded in two steps up to 600°C. Results of the kinetic analysis by the isoconversional methods of Ozawa–Flynn–Wall and Friedman yielded values of (apparent) activation energy (Ea) and preexponential factor (A). For phosphate‐stabilized PUR samples, Ea remained stable over a broad area of the degree of conversion, while for carbonate‐containing sample two regions of Ea were observed. Further advanced kinetic analysis by a nonlinear regression method revealed the form of kinetic function that was the best approximation for experimental data—for a two‐stage consecutive reaction the first step was the Avrami–Erofeev nucleation‐dependent model, and the second step was a chemical reaction (1st or nth order) model. The integrated thermogravimetric (TG)/Fourier transform infrared (FTIR) technique probed the thermal degradation of modified PURs by analyzing the evolved gases. The solid residue remaining at different temperatures was identified by diffuse reflection FTIR (Kubelka–Munk format). The complex thermal behavior was discussed on the basis of the obtained results—it can be shown that the global stabilization effect is a multistage process whose initial conditions are of critical importance in governing the nature of the entire process. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2319–2330, 2003 相似文献
6.
The thermal decomposition behavior of rigid polyurethane foams blown with water was studied by dynamic thermogravimetric analysis (TGA) in both nitrogen and air atmosphere at several heating rates ranging from room temperature to 800°C. The kinetic parameters, such as activation energy (E), degradation order (n), and pre‐exponential factor (A) were calculated by three single heating rate techniques of Friedman, Chang, and Coats–Redfern, respectively. Compared with the decomposition process in nitrogen, the decomposition of foams in air exhibits two distinct weight loss stages. The decomposition in nitrogen has the same mechanism as the first stage weight loss in air, but the second decomposition stage in air appears to be dominated by the thermo‐oxidative degradation. The heating rates have insignificant effect on the kinetic parameters except that the kinetic parameters at 5°C/min have higher values in nitrogen and lower values in air, indicating different degradation kinetics in nitrogen and air. The kinetic parameters of foam samples blown with different water level in formulation decline firstly and then increase when water level increases from 3.0 to 7.0 pph. According to the prediction for lifetime and half‐life time of foams, water‐blown rigid foams have excellent thermostability, when used as insulation materials below 100°C. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:4149–4156, 2006 相似文献
7.
Baralu Jagannatha Rashmi Daniela Rusu Kalappa Prashantha Marie France Lacrampe Patricia Krawczak 《应用聚合物科学杂志》2013,128(1):292-303
Water‐blown bio‐based thermoplastic polyurethane (TPU) formulations were developed to fulfill the requirements of the reactive rotational molding/foaming process. They were prepared using synthetic and bio‐based chain extenders. Foams were prepared by stirring polyether polyol (macrodiol), chain extender (diol), surfactant (silicone oil), chemical blowing agent (distilled water), catalyst, and diisocyanate. The concentration of chain extender, blowing agent, and surfactant were varied and their effects on foaming kinetics, physical, mechanical, and morphological properties of foams were investigated. Density, compressive strength, and modulus of foams decrease with increasing blowing agent concentration and increase with increasing chain extender concentration, but are not significantly affected by changes in surfactant concentration. The foam glass‐transition temperatures increase with increasing blowing agent and chain extender concentrations. The foam cell size slightly increases with increasing blowing agent content and decreases upon surfactant addition (without any dependence on concentration), whereas chain extender concentration has no effect on cell size. Bio‐based 1,3‐propanediol can be used successfully for the preparation TPU foams without sacrificing any properties. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013 相似文献
8.
Fifty vegetable oil‐based polyols were characterized in terms of their hydroxyl number and their potential of replacing up to 50% of the petroleum‐based polyol in waterborne rigid polyurethane foam applications was evaluated. Polyurethane foams were prepared by reacting isocyanates with polyols containing 50% of vegetable oil‐based polyols and 50% of petroleum‐based polyol and their thermal conductivity, density, and compressive strength were determined. The vegetable oil‐based polyols included epoxidized soybean oil reacted with acetol, commercial soybean oil polyols (soyoils), polyols derived from epoxidized soybean oil and diglycerides, etc. Most of the foams made with polyols containing 50% of vegetable oil‐based polyols were inferior to foams made from 100% petroleum‐based polyol. However, foams made with polyols containing 50% hydroxy soybean oil, epoxidized soybean oil reacted with acetol, and oxidized epoxidized diglyceride of soybean oil not only had superior thermal conductivity, but also better density and compressive strength properties than had foams made from 100% petroleum polyol. Although the epoxidized soybean oil did not have any hydroxyl functional group to react with isocyanate, when used in 50 : 50 blend with the petroleum‐based polyol the resulting polyurethane foams had density versus compressive properties similar to polyurethane foams made from 100% petroleum‐based polyol. The density and compressive strength of foams were affected by the hydroxyl number of polyols, but the thermal conductivity of foams was not. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007 相似文献
9.
The use of renewable resources (mainly carbohydrates) in rigid polyurethane foam has been known to offer several advantages, such as increased strength, improved flame resistance, and enhanced biodegradability. Less attention has been directed to inexpensive protein‐based materials, such as defatted soy flour. The objectives of this study were to develop water‐blown rigid polyurethane foams, containing defatted soy flour, that have acceptable or improved physical properties which also lower the cost of the foam formulation and to compare the properties of developed foams extended with three kinds of commercial soy flour. Water‐blown low‐density rigid polyurethane foams were prepared with poly(ether polyol)s, polymeric isocyanates, defatted soy flour, water, a catalyst mixture, and a surfactant. Soy flour and the initial water content were varied from 0 to 40% and from 4.5 to 5.5% of the poly(ether polyol) content, respectively. A standard laboratory mixing procedure was followed for making foams using a high‐speed industrial mixer. After mixing, the mixture was poured into boxes and allowed to rise at ambient conditions. Foams were removed from boxes after 1 h and cured at room temperature for 24 h before measurement of the thermal conductivity and for 1 week before other property tests. Foam properties were determined according to ASTM procedures. Measurement of the physical properties (compressive strength, modulus, thermal conductivity, and dimensional stability under thermal and humid aging) of these foams showed that the addition of 10–20% of three kinds of soy flour imparted water‐blown rigid polyurethane foams with similar or improved strength, modulus, insulation, and dimensional stability. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 10–19, 2001 相似文献
10.
Mercedes Santiago‐Calvo Josías Tirado‐Mediavilla Jos Luis Ruiz‐Herrero Fernando Villafae Miguel ngel Rodríguez‐Prez 《Polymer International》2019,68(10):1826-1835
An understanding of the long‐term thermal conductivity of rigid polyurethane (RPU) foams presents great interest in the building field considering the conservation of energy efficiency. In this study, the effect of different types of particles (talc, diatomaceous earth and non‐porous silica) on the thermal conductivity of RPU foams blown with cyclopentane and water as blowing agents was investigated during 3 years of aging. The characterization of the cellular structure shows how the addition of particles causes a cell size reduction of the foams, and consequently an enhancement of the thermal properties just after production. However, this initial reduction is not maintained, because each foam shows a different thermal conductivity evolution with time. We have found, for the first time, a relationship between the slope of the thermal conductivity versus time at the first measurements and the internal temperature reached during the foaming process. The evolution of the RPU foams in which higher internal temperatures were reached is more pronounced than in those RPU foams where lower foaming temperatures were observed. This effect is related to the kinetics of the diffusion of the gas occluded inside the cells and imposes a new criterion for the selection of particles to reduce the thermal conductivity of RPU foams; these additives should ideally decrease the temperature reached during the foaming process. Moreover, the effect of aging on the thermal conductivity is explained by using theoretical models. © 2019 Society of Chemical Industry 相似文献
11.
To explore the potential of isocyanate usage reduction, water‐blown rigid polyurethane foams were made by replacing 0, 20, and 50% of Voranoll® 490 in the B‐side of the foam formulation by epoxidized soybean oil (ESBO) with an isocyanate index ranging from 50 to 110. The compressive strength, density, and thermal conductivity of foams were measured. The foam surface temperature was monitored before and throughout the foaming reaction as an indirect indication of the foaming temperature. Increasing ESBO replacement and/or decreasing isocyanate index decreased the foam's compressive strength. The density of the foam decreased while decreasing the isocyanate index to 60. Further decrease in isocyanate index resulted in foam shrinkage causing a sharp increase in the foam density. The thermal conductivity of foams increased while decreasing the isocyanate index and increasing the ESBO replacement. Mathematical models for predicting rigid polyurethane foam density, compressive strength, and thermal conductivity were established and validated. Similar to compressive strength, the foaming temperature decreased while decreasing the isocyanate index and increasing the ESBO replacement. Because of the lower reactivity of ESBO with isocyanate, the rate of foaming temperature decrease with decreasing isocyanate index was in the order of 0% > 20% > 50% ESBO replacement. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
12.
The preparation and characteristics of rigid polyurethane foams (RPUFs) based on recycled polyol obtained by glycolysis of waste RPUF scraps from end-of-life refrigerators were investigated. To deactivate the amine adducts derived from isocyanates, the recycled product obtained after depolymerization was chemically modified via addition polymerization of propylene oxide. Two kinds of recycled polyols with different hydroxyl values and viscosity were blended with conventional virgin polyether polyol to prepare the RPUFs. The effects of the recycled polyols on the physical properties of RPUFs such as cell structures, compressive strength, thermal conductivity, and limiting oxygen index were discussed. It was found that the RPUFs from recycled polyols showed superior compressive strength, thermal insulation property, and self-extinguishing property compared with conventional control foam. The results of this study reveal that the recycled polyols could be used as feedstock for RPUFs with superior performance. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47916. 相似文献
13.
14.
Polyurethane (PUR) rigid foams were prepared from recycled aircraft deicing agent (aircraft deicing fluid) with reaction of hexamethylene diisocyanate at temperature of 55°C. The effect of [NCO]/[OH] ratio on properties of microscopic structure, cell size distribution, compressive strength, apparent density, as well as thermal conductivity (k) was studied. Higher [NCO]/[OH] ratio helped achieve better micromorphology, higher apparent density, and compressive strength of the PUR foams. With the [NCO]/[OH] ratio of 0.75 and 0.8, some shrinking happened during foam rising, causing a decrease in total volume of the PUR foam, and leading to higher apparent density as well as sharply increased compressive strength. All PUR foams displayed good thermal insulation properties in this study. With [NCO]/[OH] ratio increased from 0.7 to 0.8, the k value increased significantly from 34.3 to 42.2 mW m?1 K?1. The k value here was chiefly governed by the apparent density of the foams, which was in turn a function of the ratio of [NCO]/[OH]. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci., 2013 相似文献
15.
Depolymerized polyethylene terephthalate and liquefied wood polyesters can be used as a polyol for the production of polyurethane/polyisocyanurate foams. In this research, liquefied wood was synthesized by using a combination of diethylene glycol and glycerol and due to the possibility of using glycerol that is a by‐product in biodiesel production, our goal was to use as much glycerol in the liquefaction reagent as possible. We determined the properties of the polyols, properties of produced foams, and explained their correlation. Greater amount of glycerol in the liquefaction reagent resulted in higher OH number, molecular weight, functionality, and viscosity of the polyol, as well as in longer cream time and tack free time in foam preparation. Glass transition temperature, density, and water absorption of the foam increased with increasing amount of glycerol in liquefied wood. Compressive stress increased up to 30% of the glycerol in the reagent and then reduced, while thermal conductivity was not affected. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41522. 相似文献
16.
Rigid halogen‐free and flame‐retarding polyurethane foams are prepared with aluminum hydroxide, brucite, and DMMP. The effects of the hydroxides and DMMP on the foaming process and flame retarding properties of the foams are investigated by thermo gravimetric analysis, limiting oxygen index, and X‐ray powder diffraction. The thermal stability of the rigid polyurethane foams is close to that of the hydroxide fillers, with aluminum hydroxide providing better flammability performance than brucite. The hydroxide fillers and DMMP play a synergistic role in the rigid polyurethane foams and the limiting oxygen indices are up to 28.4% and 32.4%, respectively. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013 相似文献
17.
Addition flame‐retardant effect of nonreactive phosphonate and expandable graphite in rigid polyurethane foams 下载免费PDF全文
A series of flame‐retardant rigid polyurethane foams (RPUFs) containing nonreactive phosphonate (5‐ethyl‐2‐methyl‐1,3,2‐dioxaphosphorinan‐5‐yl) methyl dimethyl phosphonate P‐oxide (EMD) and expandable graphite (EG) were prepared by water blown. The flame‐retardant properties and mechanism of EMD/EG on RPUFs were systematically investigated. The EMD/EG system effectively increased the limiting oxygen index (LOI) value and decreased the values of total heat release (THR), av‐effective heat of combustion (EHC), pk‐heat release rate (HRR), total smoke release (TSR) of RPUFs. The impact values of LOI, THR, and av‐EHC resulted by EMD/EG system are nearly equal to the sum of the impact values by EMD and EG individually in RPUFs, which implies the addition flame‐retardant effect from EMD and EG. EMD alone exerted excellent gas‐phase flame‐retardant effect by releasing PO fragments with quenching effect. The firm residue produced by EMD combined well with the loose and worm‐like expanded graphite from EG further to form compact and expanded char layer, which brought excellent barrier effect and filtration effect to matrix. That's why pk‐HRR and TSR values of RPUF reduced. Depending on the simultaneous actions of EMD/EG system in gas phase and condensed phase during combustion, the flame‐retardant effects from nonreactive phosphonate and EG on RPUFs were added together. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45960. 相似文献
18.
Rigid polyurethane‐polyisocyanurate foams (PUR‐PIR) containing from 2.5% to 20% w/w of fillers (talc, aluminum hydroxide, chalk, starch and borax) were the subject of our studies; a reference sample was PUR‐PIR foam with no filler added. Apparent density, compressive strength, brittleness, content of closed cells, retention (flammability) and softening point of foams were determined and the products were analyzed by thermogravimetric method. These parameters were the basis to determine effect of type and participation of the fillers studied on physicochemical, heat, and thermal properties of foams. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 相似文献
19.
Three different surface modifiers, octadecyl trimethyl ammonium (ODTMA), octadecyl primary ammonium (ODPA), and decanediamine (DDA) were used to modify Na+? montmorillonite (MMT), and the resultant organoclays were coded as ODTMA‐MMT, ODPA‐MMT, DDA‐MMT, respectively. Rigid PU foams/organoclay composites were prepared by directly using organoclay as the blowing agent without the addition of water. Investigation shows that the morphology of the nanocomposites is greatly dependent on the surface modifiers of clay used in the composites. In detail, DDA‐MMT is partially exfoliated in the PU matrix with the smallest cell size, while two others are intercalated in the PU matrices with smaller cell sizes. The sequence of their cell sizes is pristine PU foams > rigid PU foams/ODTMA‐MMT > rigid PU foams/ODPA‐MMT > rigid PU foams/DDA‐MMT, and the average cell size of rigid PU foams/DDA‐MMT composites decreases evidently from 0.30 to 0.07 mm. Moreover, all rigid PU foams/organoclay composites show remarkable enhanced compressive and tensile strengths as well as dynamic properties than those of PU foams, and the enhancement degree coincides well with the relative extent of internal hydrogen bonding of materials and gallery spacing of organoclay. For example, in the case of rigid PU foams/DDA‐MMT composite, 214% increase in compressive strength and 148% increase in tensile strength compared with those of pure PU foams were observed. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007 相似文献
20.
A silicon‐containing water‐borne polyurethane (PU) polymer with hydroxyl side groups was synthesized that was stable in basic conditions and also capable of reacting with a reactive dye to form a covalently bonded dye molecule. The silicon‐containing anionic water‐borne PU prepolymer was synthesized from H12‐4,4′‐diphenylmethane diisocyanate (H12‐MDI), polytetramethylene glycol, polydimethylsiloxane (PDMS), 2,2′‐bis(hydroxymethyl), propionic acid (anionic centers), and triethyleneamine using the prepolymer mixing method. Water was then added to emulsify and disperse the resin to form an anionic water‐borne PU prepolymer. N‐(2‐Hydroxyethyl ethylene diamine) (HEDA) was used to extend the prepolymer to form a water‐borne PU polymer with a side chain of hydroxyl groups, which can further react with the reactive dye to form a dyed PU. The reactive dye of chlorosulfuric acid esters of sulfatoethyl sulfones can react with the water‐borne PU polymer. Behaviors of alkali resistance and dyeing properties were observed. In consideration of thermal properties, the dye‐grafted PU polymers exhibited lower glass‐transition temperatures for soft segments and hard segments than those without dye. Concerning mechanical properties, it was found that the modulus and the strength of the dyed PU polymers decreased with grafting of the dye molecule, but elongation at break was increased. The alkali resistance increased with PDMS content. For dye‐uptake properties, the percentage of dye grafting was over 90%. Also, the dye‐grafted PU exhibited a lower percentage of dye migration than that of polymers with ethylene diamine instead of HEDA as a chain extender, and showed greater colorfastness to light. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2045–2052, 2003 相似文献