首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Narrow‐distribution, well‐defined comb‐like amphiphilic copolymers are reported in this work. The copolymers are composed of poly(methyl methacrylate‐co‐2‐hydroxyethyl methacrylate) (P(MMA‐co‐HEMA)) as the backbones and poly(2‐(dimethylamino)ethyl methacrylate) (PDMAEMA) as the grafted chains, with the copolymer backbones being synthesized via atom‐transfer radical polymerization (ATRP) and the grafted chains by oxyanionic polymerization. The copolymers were characterized by gel permeation chromatography (GPC), Fourier‐transform infrared (FT‐IR) spectroscopy and 1H NMR spectroscopy. The aggregation behavior in aqueous solutions of the comb‐like amphiphilic copolymers was also investigated. 1H NMR spectroscopic and surface tension measurements all indicated that the copolymers could form micelles in aqueous solutions and they possessed high surface activity. The results of dynamic light scattering (DLS) and scanning electron microscopy (SEM) investigations showed that the hydrodynamic diameters of the comb‐like amphiphilic copolymer aggregates increased with dilution. Because of the protonizable properties of the graft chains, the surface activity properties and micellar state can be easily modulated by variations in pH. Copyright © 2004 Society of Chemical Industry  相似文献   

2.
Cellulase was immobilized directly on methyl methacrylate‐glycidyl methacrylate copolymer (MMA‐co‐GMA) and methyl methacrylate‐2‐hydroxy ethyl methacrylate copolymer (MMA‐co‐HEMA) by covalent attachment and crosslinking methods. The properties of the immobilized cellulase were investigated and compared with those of the free one. For the assays carried out through crosslinking method at 25°C and pH 7, the retained activities were found to be 91.92% and 74.63%, respectively, for MMA‐co‐GMA and MMA‐co‐HEMA crosslinked with 0.1% of 1‐cyclohexyl‐3‐(2‐morpholino‐ethyl) carbodiimide metho‐p‐toluenesulfonate (CMCT), respectively. The immobilized cellulase had better stability and higher retained activities with respect to pH, temperature, and storage stability than the free one. In the repeated use experiments, the immobilized cellulase using (MMA‐co‐GMA)‐CMCT (0.1%) and (MMA‐co‐HEMA)‐CMCT (0.1%) did not change after 10 and eight times of repeated use and maintained 67% and 62% from their original activities after 25 times, respectively. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

3.
Poly(N‐isopropylacrylamide‐co‐hydroxyethyl methacrylate) [P(NIPAM‐co‐HEMA)] copolymer was synthesized by controlled radical polymerization from respective N‐isopropylacrylamide (NIPAM) and hydroxyethyl methacrylate (HEMA) monomers with a predetermined ratio. To prepare the thermosensitive and biodegradable nanoparticles, new thermosensitive graft copolymer, poly(L ‐lactide)‐graft‐poly(N‐isoporylacrylamide‐co‐hydroxyethyl methacrylate) [PLLA‐g‐P(NIPAM‐co‐HEMA)], with the lower critical solution temperature (LCST) near the normal body temperature, was synthesized by ring opening polymerization of L ‐lactide in the presence of P(NIPAM‐co‐HEMA). The amphiphilic property of the graft copolymers was formed by the grafting of the PLLA hydrophobic chains onto the PNIPAM based hydrophilic backbone. Therefore, the graft copolymers can self‐assemble into uniformly spherical micelles ò about 150–240 nm in diameter as observed by the field emission scanning electron microscope and dynamic light scattering. Dexamethasone can be loaded into these nanostructures during dialysis with a relative high loading capacity and its in vitro release depends on temperature. Above the LCST, most of the drugs were released from the drug‐loaded micelles, whereas a large amount of drugs still remains in the micelles after 48 h below the LCST. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

4.
The kinetics of nonisothermal decomposition of (2‐phenyl‐1,3‐dioxolane‐4‐yl) methyl methacrylate (PDMMA), 2‐hydroxyethyl methacrylate (HEMA), and vinyl‐pyrrolidone (VPy) copolymers were investigated by thermogravimetry (TG) and differential thermal analysis (DTA). The data indicated that the major weight loss occurs in the range of 270 to 450°C. The decomposition characteristics showed essentially two regimes and varied depending on the temperature and the copolymer composition. The apparent kinetic parameters of the decompositions were estimated from both TG and DTA data by using the alternative calculation methods. The results suggest that the weight loss rates may be represented, depending on the type of sample, by a reaction model of overall order 1.0 to 1.6, with an activation energy of approximately 65–95 kJ mol?1. The DTA data estimated considerably higher values for the overall activation energies, around 198–240 kJ mol?1. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 95: 1500–1508, 2005  相似文献   

5.
Well‐defined methyl methacrylate (MMA) and 2‐(trimethylsiloxy)ethyl methacrylate (Pro‐HEMA) copolymers were prepared by atom‐transfer radical polymerization(ATRP), using CuCl/2,2′‐bipyridine as catalytic system and p‐toluenesulfonyl chloride as initiator. ATRP process of MMA and Pro‐HEMA was monitored by 1H NMR, and the kinetic curves of the MMA/Pro‐HEMA copolymerization were plotted in terms of the 1H NMR data. At low content of Pro‐HEMA in the feed composition, the copolymerization can be well controlled with the molecular weight, polydispersity and the monomer distribution in the copolymer chain. With the increase of Pro‐HEMA content in the feed mixture, the composition of the final copolymer deviates from the composition of the feed mixture gradually, and gradient copolymers of MMA/Pro‐HEMA can be obtained. Through the hydrolysis process, well‐defined copolymers of MMA/HEMA were obtained from poly(MMA/Pro‐HEMA). Copyright © 2003 Society of Chemical Industry  相似文献   

6.
The phase behavior of blends containing N‐alkylitaconamic acid‐co‐styrene copolymers (NAIA‐co‐S) with poly(N‐vinyl‐2‐pyrrolidone) (PVP) of two different weight average molecular weights (M w ), poly(2‐vinylpyridine) (P2VPy) and poly(4‐vinylpyridine) (P4VPy), was analyzed by differential scanning calorimetry and Fourier transform infrared spectroscopy. Copolymers containing 80% S are miscible with PVP10, PVP24, and P4VPy over the whole range of composition. In the case of blends with P2VPy, miscibility is observed only for the first three members of the series, i.e., NEIA‐co‐S, NPIA‐co‐S, and NBIA‐co‐S. For copolymers containing hexyl to dodecyl moieties, phase separation is observed in blends with P2VPy. Copolymers containing 50% S are miscible over the whole range of composition irrespective of the homopolymer and the length of the side chain of the itaconamic moiety of the copolymer. This behavior is interpreted in terms of steric hindrance, in the sense that the copolymers with long side chains are not able to interact with the nitrogen of P2VPy because of the position in the aromatic ring. The interactions between copolymers and homopolymers are discussed in terms of specific interactions like hydrogen bonds between the itaconamic moiety and the different functional groups of the homopolymers, together with the hydrophobic interaction, which cannot be disregarded. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 2512–2519, 2006  相似文献   

7.
tert‐Butyl methacrylate (TBMA) was copolymerized with various comonomers that were selected from methyl methacrylate (MMA), n‐butyl acrylate (NBA), acrylic acid (AA), and 2‐hydroxyethyl methacrylate (HEMA). From film physical properties, poly(TBMA‐co‐HEMA) and poly(TBMA‐co‐AA‐co‐NBA), were selected as resin binders. To introduce unsaturated double bonds onto the side chain of copolymers, they were further functionalized with acryloyl chloride and glycidyl methacrylate. Copolymers synthesized in this investigation were all identified by using FTIR and NMR. The thermal decomposition temperature of functionalized poly(TBMA‐co‐HEMA) showed obvious difference before and after crosslinking. Adding a small amount of EGDMA as the crosslinking agent could increase the degree of crosslinking and obviously improve the physical properties. Functionalized poly(TBMA‐co‐HEMA) was used as a binder resin and composed with a photoacid generator for positive photoresists. From exposure characteristics, the optimal lithographic condition was achieved when exposed for 90 s, PEB at 100°C for 2.5 min, and developed in 10 wt % Na2CO3 developer for 30 s. After completing the lithography process, the residual pattern of positive photoresist was further treated at 140°C for 30 min to cure the pendant unsaturated groups. The resolution of the positive photoresist was analyzed by an optical microscope and SEM technique. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 328–333, 2001  相似文献   

8.
The physicomechanical properties of functionally active poly(hydroxyethyl methacrylate‐co‐methyl methacrylate) [poly(HEMA‐co‐MMA)] are evaluated. It has been reported that the surface phosphorylated poly(HEMA‐co‐MMA) is capable of eliciting direct bone bonding when implanted in vivo. Hence, it is important to examine the physicomechanical property of the copolymer as a function of surface modification. The properties assessed are differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), equilibrium swelling, compressive strength, and dynamic mechanical analysis. According to the DSC data, the glass transition temperature, Tg of poly(HEMA‐co‐MMA) is not significantly altered by surface phosphorylation. The TGA results demonstrated that unmodified and surface phosphorylated copolymers have similar degradation profile. The differential thermal analysis further supports the data. The equilibrium swelling of functionalized poly(HEMA‐co‐MMA) in phosphate buffer saline ascertained that surface phosphorylation significantly increased the hydrophilicity of the copolymer. The study further illustrated that the percentage of equilibrium swelling appreciably increases with increase in HEMA content in the copolymer and reached a plateau after 100 h. Both compressive strength and compressive modulus of poly (HEMA‐co‐MMA) decreased due to surface phosphorylation while dynamic storage modulus value was not altered. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
The purpose of this investigation was to prepare by bulk polymerization six new isocyanatoacrylate copolymers and to characterize them. The isocyanatoacrylate copolymers, which were prepared by tri‐n‐butylborane oxide (TBBO)‐initiated free‐radical polymerization, were formed from 1 : 1 mol mixtures of 2‐isocyanatoethyl methacrylate (IEM) with 2‐hydroxyethyl methacrylate (HEMA), hydroxypropyl methacrylate (HPMA), 2‐hydroxyethyl thiomethacrylate (HETMA), ethylthioethyl methacrylate (ETEMA), 2‐(acetoxyacetoxy)ethyl methacrylate (AAEMA), and tetrahydrofurfuryl methacrylate (THFMA). These six copolymers were compared to the homopolymer of IEM, which was polymerized in an identical fashion. The bulk polymers were fractionated into their acetone‐soluble and acetone‐insoluble components. Physical characterization via photoacoustic infrared (PASIR) spectroscopy showed vast differences in residual isocyanate content. Differential scanning calorimetry (DSC) thermal analysis was carried out on all polymers. Elemental analysis (nitrogen) determined the ratio of IEM to the comonomer and boron analysis showed whether the initiator stayed in the acetone‐insoluble fraction or was “extracted” into the acetone‐soluble fraction. In conclusion, we found that the composition of the copolymers correlated well with the predicted design. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1577–1583, 1999  相似文献   

10.
Hydrogels based on 2‐hydroxyethyl methacrylate (HEMA), methacrylic acid (MAA) and poly(ethylene glycol) methyl ether methacrylate (PEGMA) were prepared by free radical polymerization. The prepared hydrogels were characterized using Fourier transform infrared spectrometry. The states of water in the hydrogels were probed using differential scanning calorimetry and three types of water (free, freezing bound and non‐freezing bound) were detected, the contents of which were calculated. Compared with conventional poly(HEMA‐co‐MAA) hydrogels, the deswelling rate of the poly(HEMA‐co‐PEGMA‐co‐MAA) hydrogels is significantly improved, owing to the introduction of PEGMA. The deswelling process can be well described with a first‐order kinetics equation. Moreover, the swelling ratio of poly(HEMA‐co‐PEGMA‐co‐MAA) hydrogels exhibits a temperature dependence. Based on the analysis of the components of the hydrogels, a brushed core/shell structure is proposed for these, and confirmed by transmission electron microscopy observations. Copyright © 2006 Society of Chemical Industry  相似文献   

11.
Atom transfer radical polymerization (ATRP) was applied to a novel synthesis of rod consisting of hyperbranched pendant chains‐coil block copolymers. The procedure included the following steps: (1) esterification reaction of poly(ethylene glycol) methyl ether (PEO) with 2‐bromoisobutyryl bromide (BIBB) yielded a PEO‐Br macroinitiator, (2) ATRP method of 2‐hydroxylethyl methacrylate (HEMA) using PEO‐Br provided PEO‐block‐poly(2‐hydroxyethyl methacrylate) (PHEMA) block copolymers, (3) esterification of PEO‐block‐PHEMA with BIBB yielded block‐type polyinitiator, and (4) ATRP of HEMA‐Br inimer using block‐type polyinitiator provided coil‐rod (consisting of hyperbranched pendant chains) block copolymers. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
In this study, synthesis, characterization, partial hydrolysis, and salt formation of poly(2‐hydroxyethyl methacrylate)‐co‐poly(4‐vinyl pyridine), (poly(HEMA)‐co‐poly‐(4‐VP)) copolymers were investigated. The copolymers were synthesized by free radical polymerization using K2S2O8 as an initiator. By varying the monomer/initiator ratio, chain lengths of the copolymers were changed. The copolymers were characterized by gel permeation chromatography (GPC), viscosity measurements, 1H and 13C NMR and FTIR spectroscopies, elemental analysis, and end group analysis methods. The copolymers were partially hydrolyzed by p‐toluene sulfonic acid monohydrate (PTSA·H2O) and washed with LiOH(aq) solution to prepare electrorheological (ER) active ionomers, poly(Li‐HEMA)‐co‐poly(4‐VP). © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3540–3548, 2006  相似文献   

13.
Copolymers of poly(acrylonitrile‐co‐ethyl methacrylate), P(AN‐EMA), with three different EMA content and parent homopolymers were synthesized by emulsion polymerization. The chemical composition of copolymers were identified by FTIR, 1H‐NMR and 13C‐NMR spectroscopy. The thermal properties of copolymers were modified by changing the EMA content in copolymer compositions. Various amounts of LiClO4 salt loaded (PAN‐co‐PEMA) copolymer films were prepared by solution casting. The dielectric properties of these films at different temperatures and frequencies were investigated. It was found that the dielectric constant and ac‐conductivity of copolymer films were strongly influenced by the salt amounts and EMA content in copolymers. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

14.
Networked, crosslinked poly[(2‐hydroxyethyl methacrylate)‐co‐(ethylene glycol dimethacrylate)] (HEMA‐EGDM) was synthesized by frontal polymerization (FP) using azobisisobutyronitrile as initiator. HEMA‐EGDM copolymers of similar composition were also synthesized by suspension polymerization. The two sets of copolymers were characterized for functional groups (IR), pore volume (mercury intrusion porosimetry), surface area (nitrogen adsorption) and morphology (scanning electron microscopy). FP‐generated polymeric network structures had higher internal pore volumes and surface areas but their surface morphologies were inferior to those of copolymers synthesized by suspension polymerization. Copyright © 2004 Society of Chemical Industry  相似文献   

15.
Defined diblock and triblock copolymers composed of methyl methacrylate‐co‐glycidyl methacrylate block and 3‐{3,5,7,9,11,13,15‐hepta(2‐methylpropyl)‐pentacyclo[9.5.1.13,9.15,15.17,13]‐octasiloxan‐1‐yl}propyl methacrylate block(s), i.e., P(MMA‐co‐GMA)‐b‐PiBuPOSSMA and PiBuPOSSMA‐b‐P(MMA‐co‐GMA)‐b‐PiBuPOSSMA, were synthesized by atom transfer radical polymerization (ATRP). First, monofunctional and bifunctional P(MMA‐co‐GMA) copolymers were synthesized by ATRP. Subsequently, these copolymers were successfully used as macroinitiators for ATRP of POSS‐containing methacrylate monomer. The process showed high initiation efficiency of macroinitiators and led to products with low dispersity. The synthesized block copolymers were characterized by size exclusion chromatography, 1H‐NMR spectroscopy and their glass transition temperatures were determined by differential scanning calorimetry. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

16.
Two fluorescent monomers N‐phenyl‐N‐(4‐vinylphenyl)pyren‐1‐amine (vinyl‐PyPA) and 1‐vinyl pyrene (VPy) were synthesized in good yields. A series of soluble conductive vinyl copolymers P(PyPA‐co‐VPy) containing vinyl‐PyPA and VPy moieties in different composition ratios were prepared by free radical solution polymerization. These copolymers showed high Tg (190?201 °C) and good thermal stability. The photoluminescence emission maxima of the copolymers were all in the range 474.5?478.5 nm, which was similar to the poly(N‐phenyl‐N‐(4‐vinylphenyl)pyren‐1‐amine) (P(PyPA)) (475 nm) but blue shifted compared with poly(1‐vinyl pyrene) (PVPy) (490.5 nm). The lifetime of the copolymers increased from 10.2 to 29.7 ns with an increase in pyrene content. The copolymers had higher quantum yields (0.51) than those of the homopolymers of P(PyPA) (0.48) and PVPy (0.13). The highest occupied molecular orbital of the copolymers remained relatively unchanged from P(PyPA), while the lowest unoccupied molecular orbital varied from ?2.41 eV to ?2.51 eV with an increase in pyrene ratio in the copolymers. The energy bandgaps of the copolymers (from 2.70 eV to 2.81 eV) were smaller than those of P(PyPA) (2.82 eV) and PVPy (3.47 eV). Two polymer light‐emitting diode (PLED) series were attempted including indium tin oxide (ITO) (fluorocarbon (CFx) treated)/P(PyPA‐co‐VPy)/LiF/Al and ITO(CFx treated)/P(PyPA‐co‐VPy)/1,3,5‐Tri(1‐phenyl‐1H‐benzo[d]imidazol‐2‐yl)phenyl (TPBi)/LiF/Al. The results suggested that the PyPA moiety is hole conducting and the PLEDs can achieve high luminance from 650 to 1150 cd m?2 (at 100 mA cm?2) only when an electron injecting layer TPBi is employed. © 2013 Society of Chemical Industry  相似文献   

17.
A polydimethylsiloxane (PDMS) macroazoinitiator was synthesized from bis(hydroxyalkyl)‐terminated PDMS and 4,4′‐azobis‐4‐cyanopentanoic acid by a condensation reaction. The bifunctional macroinitiator was used for the block copolymerization of ethyl methacrylate (EMA) and 2‐(trimethylsilyloxy)ethyl methacrylate (TMSHEMA) monomers. The poly(DMS‐block‐EMA) and poly(DMS‐block‐TMSHEMA) copolymers thus obtained were characterized using Fourier transform infrared and 1H NMR spectroscopy and differential scanning calorimetry. After the deprotection of trimethylsilyl groups, poly(DMS‐block‐HEMA) and poly(DMS‐block‐EMA) copolymer film surfaces were analysed using scanning electron microscopy and X‐ray photoelectron spectroscopy. The effects of the PDMS concentration in the copolymers on both air and glass sides of films were examined. The PDMS segments oriented and moved to the glass side in poly(DMS‐block‐EMA) copolymer film while orientation to the air side became evident with increasing DMS content in poly(DMS‐block‐HEMA) copolymer film. The block copolymerization technique described here is a versatile and economic method and is also applicable to a wide range of monomers. The copolymers obtained have phase‐separated morphologies and the effects of DMS segments on copolymer film surfaces are different at the glass and air sides. Copyright © 2010 Society of Chemical Industry  相似文献   

18.
This article describes the synthesis and characterization of 2‐hydroxylethyl methacrylate‐coN‐vinylpyrrolidone copolymers, (HEMA‐co‐NVP), via free radical polymerization followed by grafting of poly(lactide) onto (HEMA‐co‐NVP) copolymers, via ring opening polymerization using tin octoate as a catalyst. The copolymers and the grafted copolymers (i.e., amphiphiles) were subjected to sustained release studies using salicylic acid, as a model drug. Characterization of the formed copolymers was performed using 1H‐NMR, 13C‐NMR, FTIR, TGA, DSC, and SEM techniques. Derivative of TGA thermogram was used to determine %hydrophilicity and %hydrophobicity in the grafted and ungrafted copolymers. The SEM morphology revealed porous layers with crispy structure that were most likely due to the presence of poly(lactide) chains. At lower content of poly(lactide) moiety, grafted copolymers showed non‐Fickian diffusion release rate, whereas Fickian diffusion release rate at higher content of poly(lactide) was observed. The increase of poly(lactide) content (i.e., larger %hydrophobicity) in the copolymer increased the drug‐sustainability, due to the consistent but porous amphiphilic degradable structures that allow controllable release of drug in time interval. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

19.
The miscibility and phase behavior of poly(4-vinylphenol-co-methyl methacrylate) (PVPhMMA50) containing 50% of methyl methacrylate with random copolymers of poly(styrene-co-4-vinylpyridine) (PS4VPy) containing 5, 15, 30, 40, and 100% of 4-vinylpyridine, respectively, were investigated by differential scanning calorimetry, Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). It was shown that for a composition of 4-vinylpyridine less than 30%, all blends of PVPhMMA50/PS4VPy are immiscible, characterized by the apparition of two glass transitions (Tg) over their entire composition range. However, above this composition, a single Tg has been observed in all the blends of PVPhMMA50 and PS4VPy. When the amount of vinylpyridine exceeds to 40% in PS4VPy, the obtained Tgs of PVPhMMA50/PS4VPy blends were found to be significantly higher than those observed for each individual component of the mixture indicating that these blends are able to form interpolymer complexes. FTIR analysis reveals the existence of preferential specific interactions via hydrogen bonding between the hydroxyl and pyridyl groups and intensifies when the amount of 4VPy is increased in PS4VPy copolymers. Furthermore, the quantitative FTIR study carried out for PVPhMMA50/PS4VPy blends was also performed for the vinylphenol and vinylpyridine functional groups. These results were also confirmed by SEM study. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

20.
A series of copolymers based on methacrylic acid (MAA), methyl methacrylate (MMA), n‐butyl methacrylate (BM), and bornyl methacrylate (BMA) with various feed molar ratios were synthesized. To introduce the protecting alkoxy ethyl moieties onto copolymers, the pendant carboxyl groups were further reacted with alkyl vinyl ether. The pendant alkoxy ethyl groups on copolymers could be deprotected by acid catalyst. Characterization of positive‐tone photoresist‐comprising copolymers having pendant alkoxy ethyl groups was carried out. Effects of alicyclic bornyl groups on the sensitivity and thermal properties of copolymers were investigated. It was found that the existence of bornyl groups in polymer might interfere with the hydrogen bonding produced by pendant carboxyl groups, leading to the decrease of thermal resistance. Acid‐catalyzed dehydration crosslinking of pendant carboxyl groups of copolymers was also investigated. The exposure characteristic curves and the lithographic evaluation of the positive‐tone photoresist were all investigated. Effects of alicyclic bornyl groups on the plasma etching resist of copolymers were also evaluated. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 889–897, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号