首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A series of poly(amide imide)–poly(dimethylsiloxane) (PDMS) nanocomposites were fabricated through the reaction of poly(amide imide), epoxysilane (coupling agent), and diethoxydimethylsilane (DEDMS) via a sol–gel process. Nanocomposite films were obtained through the hydrolysis and condensation of DEDMS in poly(amide imide) solutions. The existence of the condensation product of DEDMS in the poly(amide imide) matrix was confirmed with Fourier transform infrared (FTIR). The concentration of PDMS on the surface of the poly(amide imide) matrix was observed through a comparison of FTIR and attenuated total reflection spectra. The contact angle of the poly(amide imide)–PDMS composites increased more than 40° with respect to that of pure poly(amide imide). The alternating‐current (ac) breakdown strength was obtained through the measurement of the ac breakdown voltage at the temperature of liquid nitrogen. As the PDMS concentration in poly(amide imide) increased, the characteristics of the insulation breakdown improved greatly. The best ac breakdown strength was observed in a poly(amide imide)–epoxysilane (30 wt %) nanocomposite with 30 wt % PDMS. The samples at the temperature of liquid nitrogen were brittle, as in a glassy state. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 342–347, 2004  相似文献   

2.
Bending of poly(vinyl alcohol) hydrogel mixed with poly(sodium acrylate) chains, PVA–PAA gel, under the influence of dc electric fields was studied. The PVA–PAA gel was prepared by repeatedly freezing and thawing a mixture of PVA and polyacrylic acid aqueous solutions. The PVA–PAA gel was a hydrogel with the PAA chains, which were entangled with the PVA polymer network and were fixed in the gel. The PVA–PAA gel bent toward the negative electrode in electrolyte solutions under dc electric fields as did the polyelectrolyte gel with negatively charged polyions. The PVA gel, free of PAA, was insensitive to dc electric fields. The deflection of the bending and the bending speed were influenced by the filed intensity, the concentration of the polyion in the gel, and the thickness of the gel. The bending of the PVA–PAA gel was qualitatively explained by a bending theory of polyelectrolyte gel, based upon the change of the osmotic pressure due to the ion concentration difference between the inside and the outside of the gel.  相似文献   

3.
A series of nanocomposite hydrogels used for bioadhesive were prepared from acrylic acid, poly(ethylene glycol) methyl ether acrylate, and intercalated hydrotalcite (HT) by photopolymerization. The microstructures of the intercalated HT and sample gels were identified by X‐ray diffraction (XRD). The results showed that the swelling ratio for these nanocomposite hydrogels increased with an increase in HT, but the gel strength and adhesive force for these gels decreased with an increase in HT. The XRD results indicated that the exfoliation of intercalated HT was achieved in the xerogels and swollen gels. Finally, the drug‐release behaviors for these gels were also examined. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 692–699, 2004  相似文献   

4.
Fourier transform infrared spectroscopy (FTIR) and electrical measurements were used for the characterization of the interpolymer complexation between poly(acrylic acid) (PAA) and poly(acrylamide) (PAAm) and also the ternary PAA–metal–PAAm complexes. The interpolymer complexes were prepared by adjusting the pH value of the mixture solutions at different PAA weight fractions (WPAA). The ternary complexes were prepared by mixing metal chloride solutions (such as ErCl3 and LaCl3) with different concentrations to PAA–PAAm mixtures and adjusting the pH value for different WPAA. It was found that the IR spectra of the interpolymer complexes showed absorption bands at shifted positions and of intensities different from those of the parent polymers. Also, the examination of the spectra of the ternary metal–polymer complexes revealed that they depend on the nature, lency, ionic radius, and concentration of the added metal chlorides. Analysis of the electrical results showed that the electrical conductivity of the interpolymer complexes are always lower than those of PAA and PAAm, which was attributed to the decrease in the mobility of the polymer chains as a result of the complexation. Also, the conductivity of the ternary metal complexes showed a dependence on the properties of the additives and were found to decrease with increasing their concentrations. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2699–2705, 2002  相似文献   

5.
Ethyl‐cyanoethyl cellulose [(E–CE)C]/poly(acrylic acid) (PAA) composite films were prepared by photopolymerizing acrylic acid (AA) in (E–CE)C/AA cholesteric liquid crystalline solutions. With the selection of suitable concentrations, (E–CE)C/PAA composite films showed vivid colors due to the selective reflection property of the cholesteric phase. It was found that the wavelength of reflection was a function of the concentration of (E‐CE)C, and the reflectivity was increased with increasing thickness of the film. The selective reflection of the composite holds well upon heating at temperatures below 160°C. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 213–217, 2004  相似文献   

6.
We report an electrically conducting polyaniline–poly(acrylic acid) blend coatings prepared by mixing the emeraldine base (EB) form of polyaniline (PANI) and poly(acrylic acid) (PAA) aqueous solution. The samples show a moderate electrical conductivity σ. If they are immersed in an HCl aqueous solution, the conductivity of the samples is increased by two or three orders of magnitude and their thermal stability is also improved. Optical transmittance spectra show a complete protonation of PANI–PAA blends after immersion in HCl aqueous solution. Fourier transform infrared spectroscopy studies indicate that the better thermal stability of σ could come from the more stable protonated imine nitrogen ions. A low percolation threshold phenomenon is observed in PANI–PAA blends, from a strong interaction between the carboxylic acid groups of PAA and the nitrogen atoms of PANI. © 1998 SCI.  相似文献   

7.
The aim of the work reported was to synthesize a series of double‐hydrophilic poly(methacrylic acid)‐block‐poly(ethylene glycol)‐block‐poly(methacrylic acid) (PMAA‐b‐PEG‐b‐PMAA) triblock copolymers and to study their self‐assembly behavior. These copolymeric self‐assembly systems are expected to be potential candidates for applications as carriers of hydrophilic drugs. Bromo‐terminated difunctional PEG macroinitiators were used to synthesize well‐defined triblock copolymers of poly(tert‐butyl methacrylate)‐block‐poly(ethylene glycol)‐block‐poly(tert‐butyl methacrylate) via reversible‐deactivation radical polymerization. After the removal of the tert‐butyl group by hydrolysis, double‐hydrophilic PMAA‐b‐PEG‐b‐PMAA triblock copolymers were obtained. pH‐sensitive spherical micelles with a core–corona structure were fabricated by self‐assembly of the double‐hydrophilic PMAA‐b‐PEG‐b‐PMAA triblock copolymers at lower solution pH. Transmission electron microscopy and laser light scattering studies showed the micelles were of nanometric scale with narrow size distribution. Solution pH and micelle concentration strongly influenced the hydrodynamic radius of the spherical micelles (48–310 nm). A possible reason for the formation of the micelles is proposed. Copyright © 2010 Society of Chemical Industry  相似文献   

8.
A new blended membrane was prepared and tested by pervaporation of light oil, a mixture of five alcohols plus water. The blended membrane was synthesized by blending poly(vinyl alcohol) and poly(acrylic acid‐co‐maleic acid) sodium salt in the presence of sulfuric acid to dope the reaction. We tested several membranes in order to choose the adequate composition to have the best permselectivity. The PVA(60)–PAA‐co‐maleic acid(40) membrane was selected as it was found to be highly selective. Sorption experiments were performed using binary and ternary water–alcohol solutions. The influence of temperature and feed composition on the selectivity and flux in pervaporation was investigated for two different binary mixtures (water/ethanol, water/isobutanol) and one ternary system (water/ethanol/isobutanol). This membrane presents good permselective properties, high water flux, and good selectivity and can even be used for high‐water activities The performances of this new membrane were compared to those obtained with the PVA(90)–PAA(10) membrane synthesized recently: The fluxes observed for the water–ethanol separation were of the same order of magnitude but the selectivity was found to be much higher. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1709–1716, 2002  相似文献   

9.
Dual‐ and multilayer composite membranes, consisting of poly(acrylic acid) (PAA) and poly(vinylidene fluoride) (PVDF), were synthesized by the plasma‐induced polymerization technique. The dual‐layer membrane had a dense PAA layer grafted onto a microporous PVDF substrate, whereas in the multilayer membranes, the grafted PAA and the PVDF layers were arranged in an alternating sequence (e.g., PAA/PVDF/PAA and PAA/PVDF/PAA/PVDF/PAA). These membranes were used in a pervaporation process to separate ethanol–water solutions. For the dual‐layer membranes, the results indicated that the separation factor increased and the permeation flux decreased with increasing amounts of grafted PAA. For the case of grafting yield < 0.6 mg/cm2, the composite membrane demonstrated poor separation. As the grafting yield reached 0.85 mg/cm2, a sharp increase of the separation factor was observed. For the multilayer membranes, the pervaporation performances were very good, with high separation factors (on the order of 100) and reasonable permeation fluxes over a wide ethanol concentration range. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2266–2274, 2004  相似文献   

10.
A new family of biodegradable amino‐acid‐based poly(ester amide)s (AA–PEAs) and amino‐acid‐based poly(ether ester amide)s (AA–PEEAs) consisting of reactive pendant functional groups (? COOH or ? NH2) were synthesized from unsaturated AA–PEAs and AA–PEEAs via a thiol–ene reaction in the presence of a radical initiator (2,2′‐azobisisobutyronitrile). The synthetic method was a one‐step reaction with near 100% yields under mild reaction conditions. The resulting functional AA–PEA and AA–PEEA polymers were characterized by Fourier transform infrared spectroscopy, NMR, and differential scanning calorimetry. These new functional AA–PEA and AA–PEEA derivatives had lower glass‐transition temperatures than the original unsaturated AA–PEA and AA–PEEA polymers, and their solubility in some organic solvents also improved. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

11.
A comparative study is undertaken of the dielectric relaxation spectra of poly(methyl acrylate), poly(ethyl acrylate), and poly(butyl acrylate), taking into consideration the spectra of the corresponding polymers in the series of the polymethacrylates. The three polymers, PMA, PEA, and PBA, present an α relaxation zone clearly separated from the secondary relaxations. Its shape is not altered with temperature, and it is possible to construct a master curve. With increasing length of the side chain, its distribution of relaxation times broadens and the temperature of the maximum of the relaxation decreases. A β relaxation with decreasing intensity as the length of the side chain increases is clearly perceptible in PMA and PEA, but almost not perceptible at all in PBA. In PEA this relaxation appears split into two peaks. Computer simulation of restricted motions of the side chain discard an origin similar to that of the γ relaxation in PPA or PBA for the lowest temperature component of the relaxation, and suggests the conjunction of two rotation mechanisms in this relaxation for the polyacrylates. For the experimental temperatures of our tests a γ relaxation shows up only in PBA. Its apparent activation energy, higher than in related polymers of the polymethacrylate series, suggests that the tighter packing of monomeric units in polyacrylates leads to a significant increase in the intermolecular contribution to the potential energy barrier responsible for the relaxation.  相似文献   

12.
Semi‐1 and semi‐2 interpenetrating polymer networks (IPNs) of poly(vinyl chloride) (PVC) and in situ formed poly(ethyl acrylate) (PEA) have been synthesized using diallyl phthalate and ethylene glycol dimethacrylate as the crosslinkers of PVC and PEA, respectively. These two types of IPNs have been compared with respect to their physical, mechanical, and thermal properties and an endeavor has been made to find a correlation of these properties with the morphology generated in these systems. The semi‐1 IPNs displayed a decrease in their tensile strength and modulus while in contrast; the semi‐2 IPNs exhibited a marginal increase with increasing crosslinked PEA incorporation. The semi‐1 and semi‐2 IPNs containing 10 and 30 wt % of PEA displayed a two‐stage degradation typical of PVC in their thermogravimetric and DSC studies while confirming the increased stability of the samples with higher percentages of PEA. The softening characteristics as detected by the extent of penetration of the thermomechanical probe as has been detected by thermomechanical analysis are in conformity with their mechanicals. The biphasic cocontinuous systems as explicit from the morphological studies reveal fibrillar characteristics in both the systems. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

13.
The structure of the hydrogel of poly(vinyl alcohol) (PVA) and poly(acrylic acid) (PAA) was investigated by small angle X-ray scattering (SAXS) of synchrotron radiation. A physically crosslinked blend gel, which was prepared by repetitive freezing and thawing of an aqueous solution of PVA and PAA, could be chemically crosslinked by esterfication of PVA with PAA even in the hydrogel state. The chemical crosslinking induced the destruction of physical crosslinks into a folded structure, indicating that the chemical crosslinking proceeds at the sites around the physical crosslinks that contain PVA and PAA in much higher concentration than other portion of the gel. The pH-induced structure changes of the PVA hydrogels, chemically crosslinked with poly(acrylic acid) (PAA) were investigated by SAXS on the samples of various chemical crosslinking time. The gels were shrunk at pH4, and swollen at pH8. The results of SAXS showed, that the Porod slope changed with chemical crosslinking time from -3.5 to ?2.9 at pH4, and from ?2.9 to ?2.4 at pH8. The results suggest that a folded structure as a structural domain, which is characterized by fractally rough interface, tends to change into the structure that corresponds to percolation cluster, particularly at pH8. The gels immersed in pH8 showed a remarkable structure change accompanying swelling. The results revealed that a conformational change of PAA chains, induced by the pH change, can be explained by the presence of a structural domain in the gel network, where both PVA chains and PAA chains get entangled and partially form a interpenetrating polymer network(IPN).  相似文献   

14.
Amphiphilic linear–hyperbranched polymer poly(ethylene glycol)–branched polyethylenimine–poly(?‐caprolactone) (PEG‐PEI‐PCL) was synthesized by progressively conjugating PEG (one chain) and PCL (multi‐chains) to PEI (hyperbranched architecture) with a yield of 87%. PEG‐PEI‐PCL forms nano‐sized uniform spherical micelles by self‐assembly in water. The micelles had an average diameter of 56 nm determined using dynamic light scattering and 35 nm observed from transmission electron microscopy images. PEG‐PEI‐PCL was used as a stabilizer of platinum nanoparticles (PtNPs) for the first time. The particle diameter of PEG‐PEI‐PCL‐stabilized PtNPs was 7.8 ± 1.4 nm. Amphiphilic (hydrophilic–hydrophilic–hydrophobic) and hyperbranched (linear–hyperbranched–grafted) structures enabled PtNPs to effectively stabilize and disperse in liquid‐phase synthesis. The highly disperse PtNPs in PEG‐PEI‐PCL micelles improved the catalytic activity for the reduction of 4‐nitrophenol with a catalytic yield of near 100%. © 2016 Society of Chemical Industry  相似文献   

15.
Fourier transform infrared (FTIR) spectroscopy was used to study the interactions of aqueous solutions of poly(acrylic acid) (PAA) and mixtures of aqueous solutions of PAA and polyacrylamide (PAAm) with chemically and thermally treated bone powders (BPs) and two commercial hydroxyapatites (HAs). An analysis of the spectra of the precipitates that resulted from the mixtures of PAA and the chemically treated samples of BP revealed that the spectra exhibited three new bands at 1544, 1552, and 1661 cm?1. The first band was attributed to the formation of calcium–polycarboxylate resulting from the interaction between the carboxylic acid groups of PAA and the calcium ions of BP. The appearance of the other two bands, in addition to the disappearance of the band corresponding to the absorption of the acid groups of PAA, provided strong evidence for the existence of other interactions between the carboxylic acid groups and the amide groups of the organic matrix of BP. On the other hand, the FTIR spectra of the samples that resulted from the mixture of PAA and thermally treated BP and the two commercial HAs showed only a new absorption band at 1544 cm?1. The interactions of mixtures of the aqueous solutions of PAA and PAAm, adjusted at low or high pH values, with the different BPs and HAs were examined. The mixtures of the aqueous solutions of PAA and PAAm interacted with the different BPs and two HAs, resulting in the formation of ternary PAA–BP–PAAm and PAA–HA–PAAm complexes. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

16.
The crosslinked resins poly(4‐vinylpiridine) (PVPy) and poly(acrylic acid) (PAA) were obtained by radical polymerization. PVPy shows monodentate ligands and PAA at basic pH is basically as acrylate anion, which can contain end‐carboxylates groups or form a bridge acting as mono‐ or bidentate ligands. The retention properties for trace metal ions from saline aqueous solutions and natural seawaters of these two resins were investigated by Batch equilibrium procedure. The metal ions studied were Cu(II), Pb(II), Cd(II), and Ni(II). The following effects were studied: pH, contact time, amount of the adsorbent, temperature, and salinity. The resin PVPy showed a high affinity for Cd(II) and PAA for Cu(II) and Cd(II). The metal ions were determined in the filtrate by atomic absorption spectrometry. By the treatment of the loaded resin with 4M HNO3, it was possible to remove completely the Cu(II) ions. The retention properties of the resins were studied for trace metal ions present in the natural seawaters. Both resins showed a high affinity for Cd(II) when the natural seawater contained Cu(II) and Cd(II). © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2908–2916, 2004  相似文献   

17.
Complexation of poly(acrylic acid) (PAA) by polystyrene‐block‐poly(vinylbenzyltrimethylammonium chloride) (PS‐b‐VB) results in a mesomorphously ordered material with a glass transition temperature of 71 °C. The complex is assumed to consist of hexagonally‐ordered ion‐rich cylindrical rods containing the PAA embedded in a polystyrene matrix. It has been shown by small‐angle X‐ray scattering (SAXS) analysis that the mesophase is characterized by sharp phase boundaries between ionic and non‐ionic regions. The structure parameters are evaluated by using a two‐dimensional interface distribution function resulting in an average cylinder radius in the range 3.0–3.5 nm and a lattice constant of 14 nm. The radius distribution is calculated to be relatively broad, which is found to be consistant with sharp phase boundaries. PS‐b‐VB‐PAA represents an example of a new type of polymeric hybrid material with a supramolecular ordered ionic–non‐ionic nanostructure. © 2000 Society of Chemical Industry  相似文献   

18.
A new type of composite membrane for pervaporation has been developed. These membranes were prepared by free‐radical copolymerization of acrylic acid with a macromolecular polyfunctional crosslinker (allylhydroxyethylcellulose) inside the porous polyethylene (PE) film. It was shown that the porous structure of the PE matrix is filled with poly(acrylic acid) (PAA), and a layer of acid is formed on the film surface. To investigate the effect of the porous matrix on the composite membrane properties, a hydrogel membrane of crosslinked PAA was also prepared without the matrix using the same procedure. PAA in both membranes was in the neutralized form (K+). Swelling behavior of the membranes and their separation characteristics for pervaporation were investigated in water–ethanol solutions depending on the ethanol concentration. All membranes exhibited a high degree of equilibrium swelling (Q = 20–50 g/g) in dilute ethanol solutions (0–30 vol %), and Q sharply dropped to 1.5–2 g/g at a EtOH concentration of 30–40 vol % due to collapse of the gel. All membranes under study were highly permeable and selective to water over a wide range of ethanol concentrations in the feed (50–96 vol %), but composite membranes had a higher separation factor due to the restriction effect of the matrix porous structure on swelling of PAA(K+) inside the pores. However, composite membranes were characterized by a lower permeation rate, compared to the crosslinked PAA membranes without a matrix, because of their lower effective surface for diffusion. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1461–1465, 2004  相似文献   

19.
A series of electric field sensitive copolymer P(AA‐co‐AAEM) gels of acrylic acid (AA) with acetoacetoxy ethyl methacrylate (AAEM) were prepared by free‐radical copolymerization, with N,N′‐methylene bisacrylamide (MBAAm) and ammounium persulfate (APS) as crosslinking agent and initiator, respectively. The structures and properties of the gels were tunable by changing the monomer feed weighty ratio (R) (R = WAAEM/(WAAEM + WAA) of AAEM and AA. The influences of the NaCl concentration and pH buffer solutions on the equilibrium swelling ratios of the gels were studied in detail. It is shown that both NaCl concentration and pH value of the buffer solution affect the swelling properties of the P(AA‐co‐AAEM) gels greatly. Moreover, the gel deswelling behavior induced by a direct current electric field was investigated and an excellent electric‐sensitivity was found. Among all the samples, the gel with monomer feed weighty ratio (R) = 0.1479 showed the best electrical contraction properties. On the basis of the experimental results, the mechanism of the electricity‐induced deswelling behavior was presented. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

20.
Solid polymer membranes from poly(vinyl alcohol) (PVA) and poly(acrylamide‐co‐acrylic acid) (PAA) with varying doping ratios of sorbitol were prepared using the solution casting method. The films were examined with Fourier transform infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry, and AC impedance spectroscopy. The impedance measurements showed that the ionic conductivity of PVA–PAA polymer membrane can be controlled by controlled doping of sorbitol within the polymer blends. The PVA–PAA–sorbitol membranes were found to exhibit excellent thermal properties and were stable for a wide temperature range (398–563K), which creates a possibility of using them as suitable polymers for device applications. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号