首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
3,3′‐Dinitrobenzidine was first reacted with excess m‐chlorophenyl acid to form a monomer with dicarboxylic acid end groups. Two types of aromatic dianhydrides (Pyromellitic diconhydride (PMDA) and 3,3′,4,4′‐sulfonyl diphthalic anhydride) were also reacted with excess 4,4′‐diphenylmethane diisocyanate to form polyimide prepolymers terminated with isocyanate groups. The prepolymers were further extended with the diacid monomer to form nitro groups containing aromatic poly(imide amide). The nitro groups in these copolymers were hydrogenated to form amine groups and then were cyclized at 180°C to form poly(imide amide benzimidazole) in poly(phosphoric acid), which acted as a cyclization agent. The resultant copolymers were soluble in sulfuric acid and poly(phosphoric acid), in sulfolane under heating to 100°C, and in the polar solvent N‐methyl‐2‐pyrrolidone under heating to 100°C with 5% lithium chloride. According to wide‐angle X‐ray diffraction, all the copolymers were amorphous. According to thermal analysis, the glass‐transition temperatures of the copolymers were 270–322°C. The 10% weight‐loss temperatures were 460–541°C in nitrogen and 441–529°C in air. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1435–1444, 2003  相似文献   

2.
In this study, 3,3′‐dinitrobenzidine was first reacted with excess isophthaloyl chloride to form a monomer with dicarboxylic acid end groups. Two types of aromatic dianhydride, [viz., pyromellitic dianhydride (PMDA) and 3,3′,4,4′‐sulfonyldiphthalic anhydride (DSDA)] also were reacted with excess 4,4′‐diphenyl‐ methane diisocyanate (MDI) to form polyimide prepolymers terminated with isocyanate groups. The prepolymers were reacted further with the diacid monomer to form a nitro group–containing aromatic poly(amide imide) copolymers. The nitro groups in these copolymers were hydrogenated to form amine groups and cyclized at 180°C to form the poly(benzimidazole amide imide) copolymers in polyphosphoric acid (PPA), which acts as a cyclization agent. From the viscosity measurements, copolymer appeared to be a reasonably high molecular weight. From the differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) measurements it was shown that the glass transition temperature of copolymers was in the range of ~270–322°C. The 10% weight loss temperatures were in the range of 460 ~ 541°C in nitrogen and ~441–529°C in air, respectively. The activated energy and the integration parameter of degradation temperature of the copolymers were evaluated with the Doyle‐Ozawa method. It indicated that these copolymers have good thermal and thermo‐oxidative stability with the increase in imide content. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2072–2081, 2004  相似文献   

3.
In this study, the 3′-dinitrobenzidine was first reacted with excess isophthaloyl chloride form a monomer with dicarboxylic acid end group. Two types of aromatic dianhydride (viz. pyromellitic dianhydride (PMDA) and 3,3′,4,4′-sulfonyldiphthalic anhydride (DSDA)), were also reacted with excess 4,4′-diphenyl-methane diisocyanate to form polyimide prepolymers terminated with an isocyanate group. The prepolymers was further extended with the diacid monomer to form a nitro group containing aromatic poly(amide-imide) copolymers. The nitro groups in these copolymers were hydrogenated to form amine groups and cyclized at 180 C, to form the poly(benzimidazole amide imide) copolymers in polyphosphoric acid which acted as a cyclization agent. The resulting copolymers can be soluble in sulfuric acid and polyphosphoric acid, in sulfolane under heating to 100 C, and in polar solvent N-methyl-2-pyrrolidone under heating to 100 C with 5% lithium chloride. From the DSC and TGA measurements, it demonstrated that the glass transition temperature of copolymers exhibits a range of 270∼322 C. The 10% weight loss temperatures exhibits a range of 460∼541 C in nitrogen, and 441∼529 C in air, respectively. The activation energy and the integration parameter of degradation temperature of the copolymers were evaluated by the Doyle–Ozawa method. It indicated that these copolymers exhibited good thermal and thermo-oxidative stability with the increase of imide content.  相似文献   

4.
2,6‐Bis(4‐aminophenoxy)pyridine was prepared via reaction of 4‐aminophenol with 2,6‐dichloropyridine in the presence of potassium carbonate. Reaction of the diamine with two mol of trimellitic anhydride afforded a diacid with preformed imide structures. Poly(ether imide amide)s were prepared by polycondensation reactions of the diacid with different diamines in the presence of triphenyl phosphite. All the monomers and polymers were fully characterized and the physical properties of the polymers including solution viscosity, thermal stability, thermal behavior and solubility were studied. Thermal analysis data showed the polymers to have high thermal stability. Copyright © 2004 Society of Chemical Industry  相似文献   

5.
Novel amic acid diamines (AADs) (2‐carboxyterephthalamido‐bis(alkyl or aryl amine)s, H2N? X? NH(O?)C? C6H3(COOH)? C(?O)NH? X? NH2, where X is were synthesized by reacting trimellitic anhydride chloride with aromatic or aliphatic diamines in dimethylformamide at 5–10 °C. Poly(amide imide)s (PAIs) with an amide to imide ratio of three in the polymer chains were prepared by interfacial polycondensation of the AADs in aqueous alkaline solution with isophthaloyl chloride or terephthaloyl chloride in dichloromethane at ambient temperature to form poly(amide amic acid)s, followed by their subsequent thermal cycloimidization. All of the PAIs were soluble in polar aprotic solvents such as dimethylformamide, dimethylacetamide, dimethyl sulfoxide and N‐methylpyrrolidone, and have inherent viscosities in the range 0.15–0.48 dL g?1. The polymers were characterized by IR and NMR spectroscopy, TGA and DSC techniques. The PAIs have initial decomposition temperatures in the range 250–460 °C in air, and glass transition temperatures of 128–320 °C, depending upon the structures of the monomers. Composite membranes containing a poly(amide amic acid) and poly(amide imide) barrier layer on the top of a porous polyethersulfone support were prepared by in situ interfacial polymerization of the AADs in aqueous alkaline solution with trimesoyl chloride in hexane, and subsequent curing. The performances of these membranes were evaluated by using aqueous feed solutions containing 2000 ppm NaCl, Na2SO4 or CaCl2. Copyright © 2006 Society of Chemical Industry  相似文献   

6.
Blends of poly(ether imide) (PEI, Ultem 1000) and an aromatic poly(ether amide) were studied. Although homogeneous or heterogeneous blends can be obtained depending on the blend preparation method, the inherent miscibility of the mixture was finally established. The so-called enthalpy relaxation method was used to detect one or two glass transition temperatures in the blends in spite of the similarity of the pure component transitions. Fourier transform infrared analysis provided additional evidence of the specific interactions, which could be in the origin of the miscibility. A preliminary study of the influence of the homogeneity level in the transport properties of the blend films was also undertaken. Carbon dioxide at 1 bar was used as a penetrant. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68: 2141–2149, 1998  相似文献   

7.
Soluble poly(amide imide) derivatives were prepared through the direct polycondensation of 1,2,4‐benzenetricarboxylic acid and three diamines—bis[4‐(3‐aminophenoxy)phenyl]sulfone, bis(4‐aminophenyl)‐1,4‐diisopropylbenzene, and 4,4′‐oxydianilne—in the presence of metal salts and phosphorous compounds. Phosphonium salt, which was used as the initiating species and was prepared by the reaction of the metal salts and phosphorous compounds, reacted with 1,2,4‐benzenetricarboxylic acid to form acyloxy phosphonium salt, and then the salt was reacted with a diamine for the preparation of the prepolymers. The prepolymers were converted into the corresponding poly(amide imide)s in a homogeneous solution state at 180°C. The poly(amide imide)s showed good thermal and mechanical properties. Glass‐transition temperatures were observed from 240 to 270°C in differential scanning calorimetry traces. A melting endotherm was not observed for the polymers with differential scanning calorimetry. The initial decomposition occurred around 400°C according to thermogravimetric analysis, and major weight loss was observed from 610 to 680°C. The poly(amide imide)s had comparatively good solubility in aprotic polar solvents at concentrations high enough (~30%) for the fabrication of various forms. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1399–1407, 2002  相似文献   

8.
A series of fluorinated polyimides and fluorinated poly(imide amide)s containing pendent cyano groups were prepared and investigated to determine their dielectric constants as a function of relative humidity and thermal characteristics. The fluorinated polymides and fluorinated poly(imide amide)s containing pendent cyano groups were prepared by reaction of bis(4-aminophenoxy) benzonitriles with a fluorinated dianhydride and with a fluorinated di(acid chloride) containing preformed imide rings. The properties of the fluorinated polyimides and fluorinated poly(imide amide)s containing pendent cyano groups were compared with those of fluorinated polyimides and fluorinated poly(imide amide)s prepared from 1,3-bis(4-aminophenoxy)benzene. The introduction of the pendent cyano groups caused an increase in the dielectric constant and an increase in the glass transition temperature of the polymers compared with the polymers prepared without pendent cyano groups.  相似文献   

9.
4,4′‐(Hexafluoroisopropylidene)‐bis‐(phthalic anhydride) (1) was reacted with L ‐leucine (2) in toluene solution at refluxing temperature in the presence of triethylamine and the resulting imide‐acid (4) was obtained in quantitative yield. The compound (4) was converted to the diacid chloride (5) by reaction with thionyl chloride. The polymerization reaction of the imide‐acid chloride (5) with 1,6‐hexamethylenediamine (6a) , benzidine (6b) , 4,4′‐diaminodiphenylmethane (6c) , 1,5‐diaminoanthraquinone (6d) , 4,4′‐sulfonyldianiline (6e) , 3,3′‐diaminobenzophenone (6f) , p‐phenylenediamine (6g) and 2,6‐diaminopyridine (6h) was carried out in chloroform/DMAc solution. The resulting poly(amide‐imide)s were obtained in high yield and are optically active and thermally stable. All of the above compounds were fully characterized by IR, elemental analyses and specific rotation. Some structural characterization and physical properties of those optically active poly(amide‐imide)s are reported. © 1999 Society of Chemical Industry  相似文献   

10.
Several new poly(amide imide)s were synthesized through the polycondensation reactions of bis(4‐trimellitimidophenyl) sulfone [N,N′‐(4,4′‐diphenylsulfone) bistrimellitimide] with a number of hydantoin derivatives in a medium consisting of thionyl chloride, N‐methyl‐2‐pyrrolidone, and pyridine. The polycondensations produced a series of novel poly(amide imide)s in high yields with inherent viscosities of 0.20–0.46 dL/g. The resulting poly(amide imide)s were characterized with elemental analysis, viscosity measurements, thermogravimetric analysis, derivative thermogravimetry, solubility testing, and Fourier transform infrared spectroscopy. All the polymers were soluble at room temperature in polar solvents such as N,N‐dimethylacetamide, N,N‐dimethylformamide, dimethyl sulfoxide, tetrahydrofuran, and N‐methyl‐2‐pyrrolidone. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1776–1782, 2005  相似文献   

11.
Continuous poly(amide‐imide) nanofibers were fabricated using a novel electrospinning method with rotating and re‐collecting cylindrical collectors. The nanofilaments were modified using various post‐treatments, i.e. glycerol treatment and thermal imidization under tension, for possible application as high‐performance reinforcements. Morphological and mechanical properties of continuous poly(amide‐imide) nanofibers prepared by the electrospinning process and various post‐treatments were measured. Severe adhesion between individual nanofibers within fiber bundles was inhibited through surface treatment of the electrospun nanofiber bundles by spraying with glycerol. The morphological and mechanical properties of the continuous poly(amide‐imide) nanofibers and thermal stability were improved using thermal imidization at high temperature under tension. The morphological and mechanical properties of the continuous electrospun nanofibers were improved significantly by post‐treatments after electrospinning because uniform and complete thermal imidization occurred through the core region of the nanofibers. Copyright © 2009 Society of Chemical Industry  相似文献   

12.
A new series of poly(amide‐imide)s (PAI) modified with a siloxane linkage was synthesized under microwave radiation in ionic liquids and organic salts via the isocyanate method. The polymerization reactions of a novel siloxanic diacid monomer with 4,4′‐methylene‐bis(4‐phenylisocyanate) MDI were studied in ammonium, phosphonium, and imidazolium‐type organic salts. These poly(amide‐imide‐siloxane)s (PAI‐Si)s were obtained with high yields and good inherent viscosities ranging from 0.30 to 0.55 dL/g. The normally high softening temperatures and poor solubility of PAIs in organic solvents were improved via the incorporation of the flexible siloxane segments into the polymer backbone. The PAI‐Sis showed glass transition temperatures around 100°C and their 10% mass loss was about 300°C. They have a char yield in the range of 30–40% at 800°C. Calculated limiting oxygen index values of the polymers were about 30; therefore, they can be considered as self‐extinguishing. The dielectric constants of these silane‐containing PAIs (2.5) are lower than common siloxane‐free polyimides (~ 3). Their good thermal stability, enhanced solubility, and low dielectric constants suggest they may function as electrical insulators. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

13.
Poly(aryl ether ketone)s (PAEKs) are a class of high‐performance engineering thermoplastics known for their excellent combination of chemical, physical and mechanical properties, and the synthesis of semicrystalline PAEKs with increased glass transition temperatures (Tg) is of much interest. In the work reported, a series of novel copolymers of poly(ether ketone ketone) (PEKK) and poly(ether amide ether amide ether ketone ketone) were synthesized by electrophilic solution polycondensation of terephthaloyl chloride with a mixture of diphenyl ether and N,N′‐bis(4‐phenoxybenzoyl)‐4,4′‐diaminodiphenyl ether (BPBDAE) under mild conditions. The copolymers obtained were characterized using various physicochemical techniques. The copolymers with 10–35 mol% BPBDAE are semicrystalline and have markedly increased Tg over commercially available poly(ether ether ketone) and PEKK due to the incorporation of amide linkages in the main chain. The copolymers with 30–35 mol% BPBDAE not only have high Tg of 178–186 °C, but also moderate melting temperatures of 335–339 °C, having good potential for melt processing. The copolymers with 30–35 mol% BPBDAE have tensile strengths of 102.4–103.8 MPa, Young's moduli of 2.33–2.45 GPa and elongations at break of 11.7–13.2%, and exhibit high thermal stability and good resistance to organic solvents. Copyright © 2010 Society of Chemical Industry  相似文献   

14.
A new monomer, N,N′‐bis(4‐phenoxybenzoyl)‐m‐phenylenediamine (BPPD), was prepared by condensation of m‐phenylenediamine with 4‐phenoxybenzoyl chloride in N,N‐dimethylacetamide (DMAc). A series of novel poly(ether amide ether ketone) (PEAEK)/poly(ether ketone ketone) (PEKK) copolymers were synthesized by the electrophilic Friedel‐Crafts solution copolycondensation of terephthaloyl chloride (TPC) with a mixture of diphenyl ether (DPE) and BPPD, over a wide range of DPE/BPPD molar ratios, in the presence of anhydrous AlCl3 and N‐methylpyrrolidone (NMP) in 1,2‐dichloroethane (DCE). The influence of reaction conditions on the preparation of copolymers was examined. The copolymers obtained were characterized by different physicochemical techniques. The copolymers with 10–25 mol % BPPD were semicrystalline and had remarkably increased Tgs over commercially available PEEK and PEKK due to the incorporation of amide linkages in the main chains. The copolymers III and IV with 20–25 mol % BPPD had not only high Tgs of 184–188°C, but also moderate Tms of 323–344°C, having good potential for the melt processing. The copolymers III and IV had tensile strengths of 103.7–105.3 MPa, Young's moduli of 3.04–3.11 GPa, and elongations at break of 8–9% and exhibited outstanding thermal stability and good resistance to organic solvents. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
Chun-Kang Ku 《Polymer》2007,48(12):3565-3573
A series of amorphous poly(imide siloxane) (PIS) segmented copolymers with various segmental lengths and contents of poly(dimethyl siloxane) (PDMS) were synthesized by condensation polymerization. Extraction was utilized to obtain highly pure PISs for a study of phase separation. The PISs self-assemble from dilute solutions that are initially rod-like structures and then rapidly transform to vesicles. Moreover, the vesicles change to solid spheres as the PDMS content increases. A variety of morphologies of the PIS films, including unilamellar vesicle, multilamellar vesicle, sea-island and others, are found as a function of the content and the segmental length of PDMS. Small angle X-ray scattering demonstrates the coexistence of large-scale phase separations and nano-scale phase separations of approximately 20 nm. The DSC results reveal that the phase separation is induced and dominated by the aggregation of PDMS segments. Furthermore, the surfaces of the hard phases in the PDMS-900 PISs are found to be fractal.  相似文献   

16.
The preparation of a new unsymmetrical kink non‐coplanar heterocyclic diamine, 1,2‐dihydro‐2‐(4‐aminophenyl)‐4‐[4‐(3‐phenyl‐4‐aminophenoxy)phenyl]‐(2H)phthalazin‐1‐one (3), from a readily available unsymmetrical phthalazinone bisphenol‐like (1) was described. The diamine can be directly polymerized with various aromatic bis(trimellitimide)s (4a–e) by using triphenyl phosphite and pyridine as condensing agents to give a series of new aromatic poly(amide imides) (5a–e) containing the kink non‐coplanar phthalazinone heterocyclic units with inherent viscosities of 0.57–1.06 dL/g. The polymers were readily soluble in a variety of solvents such as N,N‐dimethylformamide, N,N‐dimethylacetamide, dimethylsulfoxide, N‐methyl‐2‐pyrrolidinone, and even in pyridine and m‐cresol and could be cast to form flexible and tough films. The glass transition temperatures were in the range of 315–340°C, and the temperatures for 5% weight loss in nitrogen were in the range of 487–512°C. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1516–1520, 2004  相似文献   

17.
通过3,3′,4,4′-二苯醚四甲酸二酐(ODPA)和六氟二酐(6FDA)分别与11-氨基十一烷酸反应,合成了两种酰亚胺二酸单体,再用合成的酰亚胺二酸单体按照不同配比和对苯二胺反应合成了6FDA物质的量分数(在两种酰亚胺二酸单体中)分别为10%和25%的含氟共聚酰胺酰亚胺(PAI–F10和PAI–F25),同时按照相同工艺合成了不含6FDA的共聚酰胺酰亚胺(PAI–F0)。利用差示扫描量热仪测试了这3种聚合物的非等温结晶过程及其熔融行为,发现PAI–F10的结晶能力最强,其次为PAI–F0,PAI–F25的结晶现象不明显。采用Jeziorny法和Mo法分析了PAI–F0和PAI–F10的非等温结晶动力学,发现在较低降温速率下,PAI–F10生成晶体的能力更强,结晶度更高。进一步利用Kissinger方程求得PAI–F0和PAI–F10结晶活化能,发现PAI–F10具有更低的结晶活化能。以上研究结果表明含氟基团在低含量时可以促进聚酰胺酰亚胺的结晶能力,而在高含量时却抑制了聚酰胺酰亚胺的结晶。  相似文献   

18.
Two new napthtrien metal complexes, MNapth2trien; where M = Zn and Ni, were synthesized and used for the synthesis of metal‐containing polyureas and poly(urea‐imide)s. MNapth2trien underwent polymerization reaction with two diisocyanates, namely, 4,4′‐diphenylmethane diisocyanate and isophorone diisocyanate to yield polyureas. Poly(urea‐imide)s were obtained by the synthesis of metal‐containing isocyanate‐terminated polyurea prepolymers from the reaction between MNapth2trien and excess diisocyanates, which could then undergo further reaction with different dianhydrides. The dianhydrides used were pyromellitic dianhydride and benzophenone‐3,3′,4,4′‐tetracarboxylic dianhydride. The polymers were characterized by infrared, nuclear magnetic resonance, elemental analysis, X‐ray diffraction, solubility, and viscosity. Glass transition temperature of the polymers was obtained from differential scanning calorimetry and dynamic mechanical thermal analysis. Thermal stability of polymers was studied by thermogravimetric analysis in air. It was found that the resulting metal‐containing polymers exhibited good thermal stability. Initial decomposition temperatures of the polymers depend on the amount of MNapth2trien in the polymer composition. Char yields of metal‐containing poly(urea‐imide)s are higher than those of metal‐containing polyureas. Most metal‐containing polymers show good solubility in organic solvents. Shore D hardness test indicates that metal‐containing poly(urea‐imide)s are hard materials. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

19.
A series of new aromatic poly(amide‐imide)s were synthesized by the triphenyl phosphite‐activated polycondensation of the diimide‐diacid, 2,5‐bis(trimellitimido)chlorobenzene (I) with various aromatic diamines in a medium consisting of N‐methyl‐2‐pyrrolidone (NMP), pyridine, and calcium chloride. The poly(amide‐imide)s had inherent viscosities of 0.76–1.42 dL g−1. The diimide‐diacid monomer (I) was prepared from 2‐chloro‐p‐phenylenediamine with trimellitic anhydride. Most of the resulting polymers showed an amorphous nature and were readily soluble in a variety of organic solvents, including NMP and N,N‐dimethylacetamide. Transparent, flexible, and tough films of these polymers could be cast from N,N‐dimethylacetamide or NMP solutions. Their cast films had tensile strengths ranging from 74 to 95 MPa, elongations at break from 7 to 11%, and initial moduli from 1.38 to 3.25 GPa. The glass transition temperatures of these polymers were in the range of 233°–260°C, and the 10% weight loss temperatures were above 450°C in nitrogen. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1691–1701, 1999  相似文献   

20.
Molecular simulations have been used to study the sorption and diffusion properties of carbon dioxide in a series of poly (amide‐imide) (PAI) membranes containing oligo(tetrafluoroethene) segment with various numbers (n = 0, 1, 2, 3, and 4) of tetrafluoroethene units. The solubility and self‐diffusion coefficients were computed by the Grand Canonical Monte Carlo (GCMC) method and molecular dynamics (MD) simulations respectively. It was found that increasing the fluorine content of the polymer membrane reduced the associated glass transition temperature (Tg) and led to an increase in diffusion coefficient of carbon dioxide. Results indicate that penetrant molecule's diffusion coefficient is strongly dependent on chain mobility. It is also noticed that the radial distribution functions (RDFs) are inconsistent with the d‐spacings of PAIs calculated form X‐ray data. This is also thought to be tied to the number of degrees of freedom of the chain. Finally, this study gives a useful insight into how PAIs with high fluorine content can be tailored with a high permeability to carbon dioxide. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号