首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bis(diisopropyl)thiophosphoryl disulfide (DIPDIS) was used successfully as a novel coupling agent cum accelerator to co‐vulcanize the elastomer blend comprising highly unsaturated natural rubber (NR) and ethylene propylene diene rubber (EPDM) of low unsaturation content. The blend vulcanizates produced exhibit improved physical properties that can be further enhanced by implementing a two‐stage vulcanization technique, as well as by judicious selection of the NR‐to‐EPDM ratio. The results indicate coherency and homogeneity in the blend composition of two‐stage vulcanizates. The cure‐rate mismatch problem could thus be solved through the formation of rubber‐bound intermediates with a multifunctional rubber additive (i.e., DIPDIS), thereby restricting the curative migration from lower to highly unsaturated rubber. The blend morphology as revealed by SEM studies accounts for significant improvement in physical properties, particularly in two‐stage vulcanizates. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 800–808, 2001  相似文献   

2.
The effects of blend ratio, crosslinking systems, and fillers on the viscoelastic response of ethylene–propylene–diene monomer (EPDM)/styrene–butadiene rubber (SBR) blends were studied as functions of frequency, temperature, and cure systems. The storage modulus decreased with increasing SBR content. The loss modulus and loss tangent results showed that the EPDM/SBR blend vulcanizate containing 80 wt % EPDM had the highest compatibility. Among the different cure systems studied, the dicumyl peroxide cured blends exhibited the highest storage modulus. The reinforcing fillers were found to reduce the loss tangent peak height. The blend containing 40 wt % EPDM showed partial miscibility. The dispersed EPDM phase suppressed the glass‐transition temperature of the matrix phase. The dynamic mechanical response of rubbery region was dominated by SBR in the EPDM–SBR blend. The morphology of the blend was studied by means of scanning electron microscopy. The blend containing 80 wt % EPDM had small domains of SBR particles dispersed uniformly throughout the EPDM matrix, which helped to toughen the matrix and prevent crack propagation; this led to enhanced blend compatibility. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

3.
Filled covulcanizates of elastomer blend comprising natural rubber (NR) and ethylene‐propylene‐diene rubber (EPDM) of commercial importance were successfully prepared by using a multifunctional rubber additive; namely, bis(diisopropyl)thiophosphoryl disulfide (DIPDIS). A Two‐stage vulcanization technique further improved the physicochemical properties of the blend vulcanizates by restricting, through the formation of polar rubber bound intermediates, the migration of curative and filler from lower to highly unsaturated rubber. Scanning electron microscopy studies indicate homogeneity and coherency in the morphology of the two‐stage vulcanizates. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1001–1010, 2002; DOI 10.1002/app.10361  相似文献   

4.
The mechanical properties and aging characteristics of blends of ethylene propylene diene monomer (EPDM) rubber and styrene butadiene rubber (SBR) were investigated with special reference to the effect of blend ratio and cross‐linking systems. Among the blends, the one with 80/20 EPDM/SBR has been found to exhibit the highest tensile, tear, and abrasion properties at ambient temperature. The observed changes in the mechanical properties of the blends have been correlated with the phase morphology, as attested by scanning electron micrographs (SEMs). The effects of three different cure systems, namely, sulfur (S), dicumyl peroxide (DCP), and a mixed system consisting of sulfur and peroxide (mixed) on the blend properties also were studied. The stress‐strain behavior, tensile strength, elongation at break, and tear strength of the blends were found to be better for the mixed system. The influence of fillers such as high‐abrasion furnace (HAF) black, general‐purpose furnace (GPF) black, silica, and clay on the mechanical properties of 90/10 EPDM/SBR blend was examined. The ozone and water aging studies also were conducted on the sulfur cured blends, to supplement the results from the mechanical properties investigation. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2606–2621, 2004  相似文献   

5.
Acrylonitrile‐co‐styrene‐co‐methylmethacrylate (AN‐S‐MMA) terpolymer was prepared by bulk and emulsifier‐free emulsion polymerization techniques. The bulk and emulsion terpolymers were characterized by means of Fourierr transform infrared spectroscopy, 13C nuclear magnetic resonance (NMR) spectroscopy, gel permeation chromatography, thermal gravimetric analysis, and elemental analysis. The kinetics of the terpolymerization were studied. The terpolymers were then incorporated into butadiene—acrylonitrile rubber (NBR)/ethylene propylene diene monomer rubber (EPDM) blends and into chloroprene rubber (CR)/EPDM blend. The terpolymers were then tested for potential as compatibilizers by using scanning electron microscopy and differential scanning calorimetry. The terpolymers improved the compatibility of CR/EPDM and NBR/EPDM blends. The physicomechanical properties of CR/EPDM and NBR/EPDM blend vulcanizates revealed that the incorporation of terpolymers was advantageous, since they resulted in blend vulcanizates with higher 100% moduli and with more thermally stable mechanical properties than the individual rubbers. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3143–3153, 2003  相似文献   

6.
Polyglycidylmethacrylate grafted butadiene rubber (PGMA‐g‐BR) was synthesized by a graft solution copolymerization technique. The PGMA content was determined through titration against HBr. The PGMA‐g‐BR was blended with styrene butadiene rubber/butadiene acrylonitrile rubber (SBR/NBR) blends with different blend ratios. The SBR/NBR (50/50) blend was selected to examine the compatibility of such blends. Compatibility was examined using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and viscosity measurements. The scanning electron micrographs illustrate the change of morphology of the SBR/NBR rubber blend as a result of the incorporation of PGMA‐g‐BR onto that blend. The Tgs of SBR and NBR in the blend get closer upon incorporation of PGMA‐g‐BR 10 phr, which indicates improvement in blend homogeneity. The intrinsic viscosity (η) versus blend ratio graph shows a straight‐line relationship, indicating some degree of compatibility. Thermal stability of the compatibilized and uncompatibilized rubber blend vulcanizates was investigated by determination of the physicomechanical properties before and after accelerated thermal aging. Of all the vulcanizates with different blend ratios under investigation, the SBR/NBR (25/75) compatibilized blend possessed the best thermal stability. However, the SBR/NBR (75/25) compatibilized blend possessed the best swelling performance in brake fluid. The effect of various combinations of inorganic fillers on the physicomechanical properties of that blend, before and after accelerated thermal aging, was studied in the presence and absence of PGMA‐g‐BR. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1559–1567, 2006  相似文献   

7.
Synergistic combinations of diisopropyl thiophosphoryl‐N‐oxydiethylene sulfenamide (DIPTOS) with some disulfide accelerators or sulfur donors improve the physical properties of NR–EPDM blend vulcanizates. Various combinations of DIPTOS with dibenzothiazyl disulfide (MBTS), tetramethyl thiuram disulfide (TMTD), bis(N‐oxydiethylene) disulfide (ODDS) and bis(diisopropyl) thiophosphoryl disulfide (DIPDIS) were used in this study. DIPTOS when used alone produces NR vulcanizates with a moderate range of physical properties, whereas in conjunction with MBTS and DIPDIS it exhibits significant mutual activities. Morphological studies of the tensile‐fractured surfaces of the blend vulcanizates by scanning electron microscopy corroborate the physical data. Copyright © 2003 Society of Chemical Industry  相似文献   

8.
Abstract

The blends of styrene butadiene rubber (SBR) and natural rubber (NR) are prepared using a two-roll mixing mill in the presence of different types of carbon blacks as reinforcing filler. The effects of fillers on cure characteristics and thermal, dynamic–mechanical, morphological properties of the blends are studied. The ISAF N231 type of carbon black shows a significant effect on tensile, tear and modulus properties by reacting at the interface between SBR/NR matrixes. The dynamic characteristics and storage modulus of SBR/NR with SAF N110 and SRF N774 types of carbon black show distinct characteristics in respect to all other blends in this system. The thermal stability of the rubber vulcanizates containing SAF N110 and SRF N774 types of carbon blacks is higher than other blend types. With the increasing percentage of SBR to NR, the thermal stability of the blend is increased. However, the heat buildup of the blends increases with the increase in SBR percentage.  相似文献   

9.
Blends of poly(styrene‐co‐acylonitrile) (SAN) with ethylene–propylene–diene monomer (EPDM) rubber were investigated. An improved toughness–stiffness balance of the SAN/EPDM blend was obtained when an appropriate amount of acrylonitrile–EPDM–styrene (AES) graft copolymer was added, prepared by grafting EPDM with styrene–acrylonitrile copolymer, and mixed thoroughly with both of the two components of the blend. Morphological observations indicated a finer dispersion of the EPDM particles in the SAN/EPDM/AES blends, and particle size distribution became narrower with increasing amounts of AES. Meanwhile, it was found that the SAN/EPDM blend having a ratio of 82.5/17.5 by weight was more effective in increasing the impact strength than that of the 90/10 blend. From dynamic mechanic analysis of the blends, the glass‐transition temperature of the EPDM‐rich phase increased from ?53.9 to ?46.2°C, even ?32.0°C, for the ratio of 82.5/17.5 blend of SAN/EPDM, whereas that of the SAN‐rich phase decreased from 109.2 to 108.6 and 107.5°C with the additions of 6 and 10% AES copolymer contents, respectively. It was confirmed that AES graft copolymer is an efficient compatibilizer for SAN/EPDM blend. The compatibilizer plays an important role in connecting two phases and improving the stress transfer in the blends. Certain morphological features such as thin filament connecting and even networking of the dispersed rubber phase may contribute to the overall ductility of the high impact strength of the studied blends. Moreover, its potential to induce a brittle–ductile transition of the glassy SAN matrix is considered to explain the toughening mechanism. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1685–1697, 2004  相似文献   

10.
The graft copolymerization of 2‐dimethylamino ethylmethacrylate (DMAEMA) onto ethylene propylene diene mononer rubber (EPDM) was carried out in toluene via solution polymerization technique at 70°C, using dibenzoyl peroxide as initiator. The synthesized EPDM rubber grafted with poly[DMAEMA] (EPDM‐g‐PDMAEMA) was characterized with 1H‐NMR spectroscopy, gel permeation chromatography (GPC), differential scanning calorimetry (DSC), and thermal gravimetric analysis (TGA). The EPDM‐g‐PDMAEMA was incorporated into EPDM/butadiene acrylonitrile rubber (EPDM/NBR) blend with different blend ratios, where the homogeneity of such blends was examined with scanning electron microscopy and DSC. The scanning electron micrographs illustrate improvement of the morphology of EPDM/NBR rubber blends as a result of incorporation of EPDM‐g‐PDMAEMA onto that blend. The DSC trace exhibits one glass transition temperature (Tg) for EPDM/NBR blend containing EPDM‐g‐PDMAEMA, indicating improvement of homogeneity. The physico‐mechanical properties after and before accelerated thermal aging of the homogeneous, and inhomogeneous EPDM/NBR vulcanizates with different blend ratios were investigated. The physico‐mechanical properties of all blend vulcanizates were improved after and before accelerated thermal aging, in presence of EPDM‐g‐PDMAEMA. Of all blend ratios under investigation EPDM/NBR (75/25) blend possesses the best physico‐mechanical properties together with the best (least) swelling (%) in brake fluid. Swelling behavior of the rubber blend vulcanizates in motor oil and toluene was also investigated. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

11.
The devulcanization reaction of styrene–butadiene rubber (SBR) based ground tire rubber (GTR) in GTR/ethylene–propylene–diene monomer rubber (EPDM) blend was investigated through a compound‐induced reaction by increasing screw rotation speed and being in the presence of subcritical water. The effects of temperature, pressure, screw rotation speed, or promoting agents on the gel content, Mooney viscosity, and Fourier transform infrared spectra of the sol of the devulcanized blends (devulcanized ground tire rubber (DGTR)/EPDM) were measured, and the mechanical properties and microstructures of the revulcanized blend ((DGTR/EPDM)/SBR) were characterized. The results show that subcritical water as a swelling agent and reaction medium promotes the devulcanization reaction, increases the selectivity of the crosslink breakage, keeps the extrusion material from oxidative degradation, reduces the gel particle size of the devulcanized blends, and significantly improves the mechanical properties of the revulcanized SBR/(DGTR/EPDM) blends. In subcritical water, the suitable promoting agents (alkylphenol polysulfide 450, hydrogen peroxide H2O2, or 450/H2O2) accelerate the devulcanization reaction, keep the double bond content, and lead to further decrease of the gel content and Mooney viscosity of the devulcanized blends and further increase of the mechanical properties of the revulcanized SBR/(DGTR/EPDM) blends. Especially the compound promoting agent (450/H2O2) improves the selectivity of the crosslink breakage in devulcanization of SBR‐based GTR. When 450/H2O2 is added as a compound promoting agent at the best reaction condition in subcritical water (200°C, 1.6 MPa and 1000 rpm), the tensile strength and elongation at break of the revulcanized SBR/(DGTR/EPDM) blends reach to 85.4% and 201% of vulcanized SBR (24.0 MPa, 356%), respectively. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1845–1854, 2013  相似文献   

12.
The properties of styrene–acrylonitrile (SAN) and ethylene–propylene–diene (EPDM) blends containing different types of calcium carbonate filler were studied. The influence of mixing type process on the blend properties was also studied. Two different mixing processes were used. The first one includes mixing of all components together. The other process is a two‐step mixing procedure: masterbatch (MB; EPDM/SAN/filler blend) was prepared and then it was mixed with previously prepared polymer blend. Surface energy of samples was determined to predict the strength of interactions between polymer blend components and used fillers. The phase morphology of blends and their thermal and mechanical properties were studied. From the results, it can be concluded that the type of mixing process has a strong influence on the morphological, thermal, and mechanical properties of blends. The two‐step mixing process causes better dispersion of fillers in blends as well as better dispersion of EPDM in SAN matrix, and therefore, the finest morphology and improved properties are observed in blends with MB. It can be concluded that the type of mixing process and carefully chosen compatibilizer are the important factors for obtaining the improved compatibility of SAN/EPDM blends. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

13.
In this study, we investigated the effects of untreated precipitated silica (PSi) and fly ash silica (FASi) as fillers on the properties of natural rubber (NR) and styrene–butadiene rubber (SBR) compounds. The cure characteristics and the final properties of the NR and SBR compounds were considered separately and comparatively with regard to the effect of the loading of the fillers, which ranged from 0 to 80 phr. In the NR system, the cure time and minimum and maximum torques of the NR compounds progressively increased at PSi loadings of 30–75 phr. A relatively low cure time and low viscosity of the NR compounds were achieved throughout the FASi loadings used. The vulcanizate properties of the FASi‐filled vulcanizates appeared to be very similar to those of the PSi‐filled vulcanizates at silica contents of 0–30 phr. Above these concentrations, the properties of the PSi‐filled vulcanizates improved, whereas those of the FASi‐filled compounds remained the same. In the SBR system, the changing trends of all of the properties of the filled SBR vulcanizates were very similar to those of the filled NR vulcanizates, except for the tensile and tear strengths. For a given rubber matrix and silica content, the discrepancies in the results between PSi and FASi were associated with filler–filler interactions, filler particle size, and the amount of nonrubber in the vulcanizates. With the effect of the FASi particles on the mechanical properties of the NR and SBR vulcanizates considered, we recommend fly ash particles as a filler in NR at silica concentrations of 0–30 phr but not in SBR systems, except when improvement in the tensile and tear properties is required. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2119–2130, 2004  相似文献   

14.
The viscoelastic properties of the blends of chloroprene rubber (CR) with ethylene–propylene–diene monomer rubber (EPDM), polybutadiene rubber (BR), and natural rubber (NR) at different temperature were studied using rubber processing analyzer (RPA). Mooney viscosities of compounds were measured and tight milling and sheeting appearance were observed on a two‐roll mill. The results showed that Mooney viscosities and the elastic modulus of the blends decreased with the increase of the temperature from 60 to 100°C. And the decreasing trends of pure CR, pure NR, and CR/NR blend compounds were more prominent than that of pure EPDM, pure BR, CR/EPDM, and CR/BR blend compounds. For CR/EPDM blend compounds, the decreasing trend became slower with the increase of EPDM ratio in the blend. Compared with pure CR, pure NR and CR/NR blend compounds, pure EPDM, pure BR compounds, and the blend compounds of CR/EPDM and CR/BR showed less sensibility to temperature and they were less sticky to the metal surface of rolls and could be kept in elastic state at higher temperature, easy to be milled up and sheeted. At the same blend ratio and temperature, the property of tight milling of the blends decreased in the sequence of CR/EPDM, CR/BR, and CR/NR. With the increase of EPDM, BR, or NR ratio in CR blends, its property of tight milling was improved. POLYM. COMPOS., 28:667–673, 2007. © 2007 Society of Plastics Engineers  相似文献   

15.
Treated glass fibers (RICS, 3 and 6 mm in length) were added at a concentrations of 10, 20, and 30 phr in natural rubber (NR), nitrile rubber (NBR), and ethylene–propylene–diene comonomer (EPDM) formulations, in both plain and carbon black mixes. The compounds were mixed in two‐roll mill and were evaluated for their resistance to hot‐air aging, abrasion, compression set, Goodrich heat buildup, De Mattia fatigue, and for NR mixes, adhesion in the tensile mode. The vulcanizates of the three rubbers showed resistance to hot‐air aging. Abrasion resistance was poor for NR, and it improved with carbon black addition in the presence of treated glass fiber in NBR. In carbon‐black‐added EPDM vulcanizates, the abrasion resistance and fatigue resistance were better. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1124–1135, 2004  相似文献   

16.
White rice husk ash (WRHA) and silica filled ethylene–propylene–diene terpolymer (EPDM) vulcanizates were prepared using a laboratory size two‐roll mill. Curing characteristics and physical properties of vulcanizates were studied with respect to the filler loading and filler type. Filler loading was varied from 0–50 parts per hundred resin (phr) at 10 phr intervals. Curing was carried out using a semi‐efficient vulcanization system in a Monsanto rheometer. Enhancement of the curing rate was observed with increasing WRHA loading, whereas the opposite trend was observed for silica‐filled vulcanizates. It was also indicated by the maximum torque and Mooney viscosity results that WRHA offers processing advantages over silica. Compared to the silica‐filled vulcanizates, the effect of filler loading on the physical properties of WRHA‐filled vulcanizates was not significant. According to these observations, WRHA could be used as a diluent filler for EPDM rubber, while silica can be used as a reinforcing filler. © 2001 Society of Chemical Industry  相似文献   

17.
The present study aims to enhance EPDM rubber–silica interaction by employing a special technique called Two‐Stage Vulcanization, with the help of a multifunctional rubber additive, bis diisopropyl thiophosphoryl disulfide (DIPDIS). In this process EPDM rubber was heated along with rubber additives up to the time just before the commencement of cure and then filler was incorporated to the preheated rubber to get the final mix. The efficiency of this novel technique is evaluated by the enhancement of physical properties of the silica‐filled vulcanizates. This novel technique is also employed to investigate the effect of a silane‐coupling agent, viz., bis (3‐triethoxy silyl propyl) tetrasulphide (TESPT), in addition to DIPDIS, on the rubber–filler interaction. The positive role of this technique in enhancing the rubber–filler interaction is evidenced by the dynamic mechanical analysis and scanning electron microscopy. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1132–1139, 2006  相似文献   

18.
Attempts were made to prepare dynamically crosslinked ethylene–propylene–diene monomer/polypropylene (EPDM/PP, 60/40 w/w) blends loaded with various amounts of silica as a particulate reinforcing agent. The dispersion of silica between the two phases under mixing conditions, and also extent of interaction, as the two main factors that influence the blend morphology were studied by scanning electron microscopy. Increasing the silica concentration led to the formation of large‐size EPDM aggregates shelled by a layer of PP. Dynamic mechanical thermal analysis performed on the dynamically cured silica‐loaded blend samples showed reduction in damping behavior with increasing silica content. Higher rubbery‐like characteristics under tensile load were exhibited by the silica‐filled EPDM/PP‐cured blends. However, increasing the silica level to 50 phr led to the enhancement of interface, evidenced by increases in the tensile modulus and extensibility of the blend compared with those of the unloaded sample. Addition of a silane coupling agent (Si69) into the mix improved the mechanical properties of the blend, attributed to the strengthening of interfacial adhesion between the PP matrix and silica‐filled EPDM phase. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2000–2007, 2004  相似文献   

19.
Rubber–rubber blends are used widely in industry, for example, in tire manufacture. It is often difficult to characterize interfaces in such rubber–rubber blends quantitatively because of the similarity in the chemical structure of the component rubbers. Here, a new method was suggested for the measurement of the weight fraction of the interface in rubber–rubber blends using modulated‐temperature differential scanning calorimetry (M‐TDSC). Quantitative analysis using the differential of the heat capacity, dCp/dT, versus the temperature signal from M‐TDSC allows the weight fraction of the interface to be calculated. As examples, polybutadiene rubber (BR)–natural rubber (NR), BR–styrene‐co‐butadiene rubber (SBR), SBR–NR, and nitrile rubber (NBR)–NR blend systems were analyzed. The interfacial content in these blends was obtained. SBR is partially miscible with BR. The cis‐structure content in BR has an obvious effect on the extent of mixing in the SBR–BR blends. With increasing styrene content in the SBR in the SBR–BR blends, the interface content decreases. NR is partially miscible with both BR and SBR. The NBR used in this research is essentially immiscible with NR. The maximum amount of interface was found to be at the 50:50 blend composition in BR–NR, SBR–BR, and SBR–NR systems. Quantitative analysis of interfaces in these blend systems is reported for the first time. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1791–1798, 2000  相似文献   

20.
Bis(diisopropyl)thiophosphoryl disfulfide (DIPDIS) can be successfully used to form a blend comprising polar carboxylated nitrile rubber (XNBR) and nonpolar NR through a chemical link between the two. It is revealed from the study that the physical properties of the vulcanizates obtained from the NR-XNBR blend could be significantly improved by the judicious selection of the NR:XNBR ratio. These properties can further be improved by two-stage vulcanization as described in the procedure. The SEM study reveals that it is possible to form a coherent blend of NR and XNBR in the presence of DIPDIS. © 1994 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号