首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The reaction behavior and physical properties of polyurethane (PU)/clay nanocomposite systems were investigated. Organically modified clay was used as nanofillers to formulate the nanocomposites. Differential scanning calorimetry was used to study the reaction behavior of the PU/clay nanocomposite systems. The reaction rate of the nanocomposite systems increased with increasing clay content. The reaction kinetic parameters of proposed kinetic equations were determined by numerical methods. The glass transition temperatures of the PU/clay nanocomposite systems increased with increasing clay content. The thermal decomposition behavior of the PU/clay nanocomposites was measured by using thermogravimetric analysis. X‐ray diffractometer and transmission electronic microscope data showed the intercalation of PU resin between the silicate layers of the clay in the PU/clay nanocomposites. A universal testing machine was used to investigate the tensile properties of the PU/clay nanocomposites. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1641–1647, 2005  相似文献   

2.
The curing behavior and physical properties of dicyanate/polyetherimide (PEI) semi‐interpenetrating polymer network (IPN) systems were investigated. Differential scanning calorimetry (DSC) was used to study the curing behavior of the dicyanate/PEI semi‐IPN systems. The curing rate of the semi‐IPN system decreased as the PEI content increased. An autocatalytic reaction mechanism can describe well the curing kinetics of the semi‐IPN systems. The reaction kinetic parameters were determined by fitting DSC conversion data to the kinetic equation. The glass transition temperature of the semi‐IPNs decreased with increasing PEI content. Two glass transitions due to phase‐separated morphology were observed for the semi‐IPN containing over 15 phr (parts per hundred parts of dicyanate resin) PEI. The thermal stability and dynamic mechanical properties of the semi‐IPNs were measured by thermal analysis.  相似文献   

3.
The curing behavior of an epoxy/clay nanocomposite system composed of a bifunctional epoxy resin with an aromatic amine curing agent and an organically modified clay was investigated. Differential scanning calorimetry (DSC) was used to investigate the curing behavior of the epoxy/clay nanocomposite system. The curing rate of the nanocomposite system increased with increasing clay content. A kinetic equation, considering an autocatalytic reaction mechanism, could describe fairly well the curing behavior of the epoxy/clay nanocomposite system. The reaction kinetic parameters of the kinetic equation were determined by fitting DSC conversion data to the kinetic equation, using a nonlinear numerical method. Dynamic mechanical analysis was used to investigate the thermomechanical properties of the epoxy/clay nanocomposite system. The glass transition temperature of the epoxy/clay nanocomposite system increased slightly with increasing clay content. The structure of the nanocomposite system was characterized by X‐ray diffraction analysis and transmission electron microscope imaging. The formation of intercalated structures was observed dominantly in the epoxy/clay nanocomposites, together with some exfoliated structures. POLYM. ENG. SCI., 46:1318–1325, 2006. © 2006 Society of Plastics Engineers  相似文献   

4.
The cure behavior and properties of epoxy/dicyanate blends containing a stoichiometric amount of an amine curing agent for epoxilde groups were investigated as a function of blend composition. Differential scanning calorimetry (DSC) was used to investigate the dynamic and isothermal cure behavior of the blends. The cure rate of the blend increased with increasing dicyanate content. A second order autocatalytic reaction mechanism described the cure kinetics of the blends. The kinetic parameters were determined by fitting the dynamic DSC data to the model kinetic equation. The k10 and E1 values were mainly affected by the change of dicyanate content. The glass transition temperature of the blend decreased with increasing dicyanate content. The thermal decomposition characteristics of the blends were investigated by thermogravimetric analysis (TGA). Dynamic mechanical analysis (DMA) and thermal mechanical analysis (TMA) were used to investigate the mechanical properties of the blends. With increasing dicyanate content, the cure rate increased but the thermal and mechanical properties of the cured blends were not improved.  相似文献   

5.
Dicyanate–clay nanocomposites comprising a dicyanate resin and a type of organically modified clay were prepared and characterized, and their thermomechanical properties were investigated. The organically modified clay had silicate layers of nanometer size intercalated with an organic modifier, which improved the compatibility between the clay and organic materials, such as dicyanate resins. Dynamic mechanical analysis was performed to investigate the thermomechanical properties of the dicyanate–clay nanocomposites containing various amounts of the clay. The storage modulus of the nanocomposites below their glass‐transition temperatures slightly increased with increasing clay content. The glass‐transition temperature of the dicyanate–clay nanocomposites increased with increasing clay content. The nanostructures of the dicyanate–clay nanocomposites were characterized by transmission electron microscopy and X‐ray diffraction analysis. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2629–2633, 2003  相似文献   

6.
DSC thermal analysis and X‐ray diffraction have been used to investigate the isothermal crystallization behavior and crystalline structure of nylon 6/clay nanocomposites. Nylon 6/clay has prepared by the intercalation of ε‐caprolactam and then exfoliating the layered silicates by subsequent polymerization. The DSC isothermal results reveal that introducing saponite into the nylon structure causes strongly heterogeneous nucleation induced change of the crystal growth process from a two‐dimensional crystal growth to a three dimensional spherulitic growth. But the crystal growth mechanism of nylon/montmorillonite nanocomposites is a mixed two‐dimensional and three‐dimensional spherulitic growth. The activation energy drastically decreases with the presence of 2.5 wt % clay in nylon/clay nanocomposites and then slightly increases with increasing clay content. The result indicates that the addition of clay into nylon induces the heterogeneous nucleation (a lower ΔE) at lower clay content and then reduces the transportation ability of polymer chains during crystallization processes at higher clay content (a higher ΔE). The correlation among crystallization kinetics, melting behavior, and crystalline structure of nylon/clay nanocomposites is also discussed. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 2196–2204, 2004  相似文献   

7.
Low density polyethylene (LDPE)/clay nanocomposites, which can be used in packaging industries, were prepared by melt‐mix organoclay with polymer matrix (LDPE) and compatibilizer, polyethylene grafted maleic anhydride (PEMA). The pristine clay was first modified with alkylammonium salt surfactant, before melt‐mixed in twin screw extruder attached to blown‐film set. D‐spacing of clay and thermal behavior of nanocomposites were characterized by Wide‐Angle X‐ray Diffraction (WAXD) and differential scanning calorimetry (DSC), respectively. WAXD pattern confirmed the increase in PEMA contents exhibited better dispersion of clay in nanocomposites. Moreover, DSC was reported the increased PEMA contents caused the decrease in degree of crystallinity. Mechanical properties of blown film specimens were tested in two directions of tensile tests: in transverse tests (TD tests) and in machine direction tests (MD tests). Tensile modulus and tensile strength at yield were improved when clay contents increased because of the reinforcing behavior of clay on both TD and MD tests. Tensile modulus of 7 wt % of clay in nanocomposite was 100% increasing from neat LDPE in TD tests and 17% increasing in MD tests. However, elongation at yield decreased when increased in clay loading. Oxygen permeability tests of LDPE/clay nanocomposites also decreased by 24% as the clay content increased to 7 wt %. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

8.
The curing behavior and thermomechanical properties of dicyanate/polyethersulfone (PES) blends were investigated. Differential scanning calorimetry (DSC) was used to study the curing behavior of the dicyanate/PES blends. A second‐order autocatalytic reaction mechanism was used to describe the cure kinetics of the blends. The reaction kinetic parameters were determined by fitting DSC conversion data to the kinetic equation. The main glass‐transition temperatures of the blends decreased with increasing PES content. Two glass‐transition temperatures indicating phase‐separated morphology of the blends were observed. The thermal decomposition behavior of the blends was measured using thermogravimetric analysis. Mechanical and electrical properties of the blends were investigated. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 1952–1962, 2001  相似文献   

9.
The crystal transformation and thermomechanical properties of melt‐intercalated poly(vinylidene fluoride) (PVDF)/clay nanocomposites are reported in this study. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were used to study the thermal properties of PVDF and its nanocomposites with various clay concentrations. The incorporation of clay in PVDF results in the formation of β‐form crystals of PVDF. DSC study of melting behavior suggested the presence of only α‐phase crystals in neat PVDF and both α‐ and β‐phase crystals in the nanocomposite. This conclusion was corroborated by findings from Fourier‐transform infrared (FTIR) spectroscopy and X‐ray diffraction (XRD). Dynamic mechanical analysis (DMA) indicated significant improvements in storage modulus over a temperature range of 20–150 °C. The coefficient of thermal expansion (CTE) decreases with increasing clay loading. Copyright © 2004 Society of Chemical Industry  相似文献   

10.
The effect of clay content on the ultraviolet (UV)-curing behavior and physical properties of a urethane-acrylate/clay nanocomposite system was studied. The UV-curing behavior of the nanocomposite system was investigated by monitoring the change of a characteristic IR absorption peak for acrylate groups. The UV-curing rate and final conversion of the nanocomposite system increased with increasing clay content and affected the physical properties of the nanocomposites. The thermal, mechanical and optical properties of the nanocomposites were affected by clay content. The X-ray diffraction (XRD) patterns and transmission electron microscopy (TEM) image showed that the nanocomposites had an intercalated structure. POLYM. COMPOS., 28:325–330, 2007. © 2007 Society of Plastics Engineers  相似文献   

11.
X‐ray diffraction methods and DSC thermal analysis have been used to investigate the structural change of nylon 6/clay nanocomposites. Nylon 6/clay has prepared by the intercalation of ε‐caprolactam and then exfoliaton of the layered saponite or montmorillonite by subsequent polymerization. Both X‐ray diffraction data and DSC results indicate the presence of polymorphism in nylon 6 and in nylon 6/clay nanocomposites. This polymorphic behavior is dependent on the cooling rate of nylon 6/clay nanocomposites from melt and the content of saponite or montmorillonite in nylon 6/clay nanocomposites. The quenching from the melt induces the crystallization into the γ crystalline form. The addition of clay increases the crystallization rate of the α crystalline form at lower saponite content and promotes the heterophase nucleation of γ crystalline form at higher saponite or montmorillonite content. The effect of thermal treatment on the crystalline structure of nylon 6/clay nanocomposites in the range between Tg and Tm is also discussed.  相似文献   

12.
Polyester/clay nanocomposites were prepared by melt compounding with different clay loadings. Comparing against neat polyester resins, the crystallization and multiple melting behavior of the nanocomposites was investigated by differential scanning calorimetry (DSC) and X‐ray diffraction (XRD). Nanoclay filler is an effective heterogeneous nucleating agent, as evidenced by a decrease and an increase in the crystallization temperature for both cold and melt crystallization of polyesters, respectively. The degree of crystallinity was found to increase with increasing clay content, due to heterogeneous nucleation effects by the addition of a nanofiller. For the annealed samples, multiple melting peaks were always observed for both neat polyester and its nanocomposites. The origins of the multiple melting behavior are discussed, based on the DSC and XRD results. Interestingly, an ‘abnormal’ high‐temperature endothermic peak (Tm, 3) at about 260 °C was observed when the nanocomposite samples were annealed at higher temperatures (eg ≥240 °C). The constrained polyester crystals formed within intercalated clay platelets due to confinement effects were probably responsible for this melting event at these higher temperatures. Copyright © 2004 Society of Chemical Industry  相似文献   

13.
Differential scanning calorimeter (DSC) and X‐ray diffraction methods were used to investigate the isothermal and nonisothermal crystallization behavior and crystalline structure of syndiotactic polystyrene (sPS)/clay nanocomposites. The sPS/clay nanocomposites were prepared by mixing the sPS polymer solution with the organically modified montmorillonite. DSC isothermal results revealed that introducing 5 wt% of clay into the sPS structure causes strongly heterogeneous nucleation, inducing a change of the crystal growth process from mixed three‐dimensional and two‐dimensional crystal growth to two‐dimensional spherulitic growth. The activation energy of sPS drastically decreases with the presence of 0.5 wt% clay and then increases with increasing clay content. The result indicates that the addition of clay into sPS induces the heterogeneous nucleation (a lower ΔE) at lower clay content and then reduces the transportation ability of polymer chains during crystallization processes at higher clay content (a higher ΔE). We studied the non‐isothermal melt‐crystallization kinetics and melting behavior of sPS/clay nanocomposites at various cooling rates. The correlation among crystallization kinetics, melting behavior and crystalline structure of sPS/clay nanocomposites is discussed. Polym. Eng. Sci. 44:2288–2297, 2004. © 2004 Society of Plastics Engineers.  相似文献   

14.
Polymer/clay nanocomposite latexes in the form of positively charged nanoparticles were synthesized by a newly developed initiating system, activators generated by electron transfer (AGET), which has been employed in atom transfer radical polymerization (ATRP). These clay‐dispersed latexes were synthesized using AGET ATRP of styrene and butyl acrylate in a miniemulsion system in which, ascorbic acid as a reducing agent was added drop wise to reduce termination reactions. Particle size and particle size distribution of resulted nanocomposite latexes were characterized by dynamic light scattering (DLS). These latexes were in the range of 138 to 171 nm in size. Gel permeation chromatography (GPC) was used to characterize the molecular weight and molecular weight distribution of the resultant copolymer nanocomposites. GPC traces showed that polymers of narrow molecular weight distribution and low Polydispersity Index (PDI) have been synthesized; this clearly shows ATRP reaction is conducted successfully. By increasing nanoclay content, molecular weight of the nanocomposites decreases. The presence of the nanofiller increases the thermal stability of the nanocomposites as investigated by thermogravimetric Analysis (TGA). Glass transition temperature of nanocomposites increases compared with the neat copolymer which was studied by differential scanning calorimetry (DSC). scanning electron microscope (SEM) showed sphere morphology of polymer particles synthesized by miniemulsion polymerization. X‐ray diffraction (XRD) and transmission electron microscopy (TEM) results showed that mixed intercalated and exfoliated morphology is obtained. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

15.
Semi‐interpenetrating polymer networks (semi‐IPNs) composed of a dicyanate resin and a poly(ether sulfone) (PES) were prepared, and their curing behavior and mechanical properties were investigated. The curing behavior of the dicyanate/PES semi‐IPN systems catalyzed by an organic metal salt was analyzed. Differential scanning calorimetry was used to study the curing behavior of the semi‐IPN systems. The curing rate of the semi‐IPN systems decreased as the PES content increased. An autocatalytic reaction mechanism was used to analyze the curing reaction of the semi‐IPN systems. The glass‐transition temperature of the semi‐IPNs decreased with increasing PES content. The thermal decomposition behavior of the semi‐IPNs was investigated. The morphology of the semi‐IPNs was investigated with scanning electron microscopy. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1079–1084, 2003  相似文献   

16.
A Ti-based Ziegler–Natta catalyst supported on the clay was used for producing the polyethylene/clay nanocomposites through in situ polymerization. This catalyst showed high activity in the ethylene polymerization. The two-step polymerization approach, i.e. in the presence and absence of hydrogen, was laid out to broaden the molecular weight distribution of the polyethylene/clay nanocomposite. The molecular weights and molecular weight distribution of the nanocomposites were characterized by the gel permeation chromatography. It was found that the molecular weight distribution was remarkably widened towards bimodal distribution by using the above mentioned approach. The thermal properties of the produced nanocomposites were studied by differential scanning calorimetry and thermal gravimetric analysis. The microstructure of the resulting bimodal polyethylene/clay nanocomposite was investigated by X-ray diffraction and transmission electron microscopy. The thermal gravimetric analysis indicated an improved thermal stability of the produced nanocomposites. In addition, the studies proved the nanocomposite formation with the exfoliated structure of the clay in the polyethylene matrix.  相似文献   

17.
Montmorillonite (MMT)‐based polyimide (PI) nanocomposites were prepared via two‐stage polymerization of PI using polyamic acid (PAA). The clay was organically modified using various alkylammonium ions to examine the effect of changes in alkyl length on the intercalation spacing of both the treated clays and their hybrids with PAA and PI. The intercalation behavior of clay in the PI matrix and its thermal and mechanical properties were investigated as a function of clay concentration. The d‐spacing of organically modified MMT (O‐MMT) increased with increasing length of the alkylammonium chain. PI/O‐MMT hybrids form exfoliated nanocomposites at clay concentrations below 2 wt%, while they form intercalated nanocomposites together with some exfoliated ones at clay contents exceeding 4 wt%. Young's modulus increased rapidly to a clay loading of 2 wt%, and leveled off with further increases in clay loading. The tensile strength at break increased rapidly up to a clay loading of 1 wt%, and then decreased sharply, while the strain at break showed a monotonic decrease with increasing clay loading from 0 to 8 wt%. The storage modulus, E′, in the temperature range below the glass transition temperature Tg, generally increased with increasing clay content, except at the highest clay content of 8 wt%. Copyright © 2004 Society of Chemical Industry  相似文献   

18.
Novel hydrogel nanocomposites were synthesized by solution polymerization of acrylamide in the presence of carrageenan biopolymer and laponite RD clay. Laponite was used as an inorganic cross-linker. Ammonium persulfate was applied as an initiator. The structure and morphology of the nanocomposites were investigated using XRD, scanning electron microscopy, and transition electron microscopy techniques. The influence of both laponite nanoclay and the carrageenan content on the swelling degree of nanocomposites was studied and it was found that all nanocomposites containing carrageenan component have a high swelling degree compared to a nanocomposite without carrageenan. The obtained nanocomposites were examined to remove a cationic crystal violet (CV) dye from water. The effect of carrageenan and clay contents on the speed of dye adsorption revealed that while the rate of dye adsorption is enhanced by increasing the clay content, it was depressed as the carrageenan content increased in nanocomposite composition. The results showed that the pseudo-second-order adsorption kinetic was predominant in adsorption of CV onto nanocomposites. The experimental equilibrated adsorption capacity of nanocomposites was analyzed using Freundlich and Langmuir isotherm models. The results indicated that the experimental data fit the Langmuir isotherm best. Maximum adsorption capacity was obtained for carrageenan-free nanocomposite with 79.8?mg?g?1 of adsorbed CV onto nanocomposite.  相似文献   

19.
(Low‐density polyethylene) (LDPE)/clay nanocomposites were prepared by melt blending in a twin‐screw extruder by using different mixing methods. Zinc‐neutralized carboxylate ionomer was used as a compatibilizer. Blown films of the nanocomposites were then prepared. The effect of mixing method on the clay dispersion and properties of the nanocomposites was evaluated by wide‐angle X‐ray diffraction analysis, mechanical properties, thermal properties, and barrier properties. The structure and properties of nanocomposites containing different amounts of nanoclay prepared by selected mixing techniques were also investigated. It was found that melt compounding of Surlyn/clay masterbatch with pure LDPE and Surlyn (two‐step‐a method) results in better dispersion and intercalation of the nanofillers than melt mixing of LDPE/Surlyn/clay masterbatch with pure LDPE and surlyn (two‐step‐b method) and direct mixing of LDPE with clay. The films containing ionomer have good barrier properties. A wide‐angle X‐ray diffraction pattern indicates that intercalation of polymer chains into the clay galleries decreases by increasing the clay content. Barrier properties and tensile modulus of the films were improved by increasing the clay content. In addition, tensile strength increased in the machine direction, but it decreased in the transverse direction by increasing the clay content. DSC results showed that increasing the clay content does not show significant change in the melting and crystallization temperatures. The results of thermogravimetric analysis showed that the thermal stability of the nanocomposites decreased by increasing the clay content more than 1 wt%. J. VINYL ADDIT. TECHNOL., 21:60–69, 2015. © 2014 Society of Plastics Engineers  相似文献   

20.
To study the effect of organophilic clay concentration on nonisothermal crystallization, poly(L ‐lactic acid) (PLLA)/montmorillonite (MMT) nanocomposites were prepared by mixing various amounts of commercial MMT (Cloisite® 30B) and PLLA. The effect of MMT content on melting behavior and crystal structure of nonisothermal crystallized PLLA/MMT nanocomposites was investigated by differential scanning calorimetry (DSC), small‐angle X‐ray scattering, and wide‐angle X‐ray diffraction (XRD) analyses. The study was focused on the effect of the filler concentration on thermal and structural properties of the nonisothermally crystallized nanocomposite PLLA/MMT. The results obtained have shown that at filler loadings higher than 3 wt %, intercalation of the clay is observed. At lower clay concentrations (1–3 wt %), exfoliation predominates. DSC and XRD analysis data show that the crystallinity of PLLA/MMT composites increases drastically at high clay loadings (5–9 wt %). In these nanocomposites, PLLA crystallizes nonisothermally in an orthorhombic crystal structure, assigned to the α form of PLLA. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号