首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
A series of microcellular poly(ether imide) (PEI) foams and nanocellular carboxylated multiwalled carbon nanotube (MWCNT‐COOH)/PEI foams were prepared by the batch foaming method. MWCNT‐COOHs with different aspect ratios were introduced into the PEI matrix as heterogeneous nucleation agents to improve the cell morphology of the microcellular PEI foams. The effect of the aspect ratio of the MWCNT‐COOHs on the cellular morphology, and gas diffusion is discussed. The results show that with the addition of MWCNT‐COOH, the sorption curve showed a slight reduction of carbon dioxide solubility, but the gas diffusion rate could be improved. The proper aspect ratio of MWCNT‐COOH could improve the cellular morphology under the same foaming conditions, in which m‐MWCNT‐COOH (aspect ratio ≈ 1333) was the best heterogeneous nucleation agent. When the foaming temperature was 170°C, the cell size and cell density of nanocellular m‐MWCNT‐COOH reduced to 180 nm and increased to 1.58 × 1013 cells/cm3, respectively. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42325.  相似文献   

2.
In the past 3 decades, there has been great advancement in the preparation of microcellular thermoplastic polymer foams. However, little attention has been paid to thermoplastic elastomers. In this study, microcellular poly(ethylene‐co‐octene) (PEOc) rubber foams with a cell density of 2.9 × 1010 cells/cm3 and a cell size of 1.9 μm were successfully prepared with carbon dioxide as the physical blowing agent with a batch foaming process. The microcellular PEOc foams exhibited a well‐defined, closed‐cell structure, a uniform cell size distribution, and the formation of unfoamed skin at low foaming temperatures. Their difference from thermoplastic foam was from obvious volume recovery in the atmosphere because of the elasticity of the polymer matrix. We investigated the effect of the molecular weight on the cell growth process by changing the foaming conditions, and two important effect factors on the cell growth, that is, the polymer matrix modulus/melt viscoelastic properties and gas diffusion coefficient, were assessed. With increasing molecular weight, the matrix modulus and melt viscosity tended to increase, whereas the gas solubility and diffusion coefficient decreased. The increase in the matrix modulus and melt viscosity tended to decrease the cell size and stabilize the cell structure at high foaming temperatures, whereas the increase in the gas diffusion coefficient facilitated cell growth at the beginning and limited cell growth because most of the gas diffused out of the polymer matrix during the long foaming times or at high foaming temperatures. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

3.
In this research, the effect of crystalline fraction of polypropylene (PP) on cell nucleation behavior was overcome by an introduction of solvent‐plasticized step to the microcellular foaming in a solid‐state batch‐foaming process. Utilizing the plasticization performance of the solvent facilitated the PP to be foamed at the temperatures lower than its melting point with the dramatic development in the cellular morphology of the final foams. In consequence of the heterogeneous cell nucleation sites induction and the crystalline loss, which were induced by solvent, a high cell density (i.e., 109–1010 cells/cm3) was promoted without the cell sacrificing at the elevated temperatures (155 and 165°C) and favorable PP microcellular foams were accomplished. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

4.
Three different grades of poly(methyl methacrylate) (PMMA) with different rheological properties are used for the production of nanocellular materials using gas dissolution foaming. The influences of both the viscosity of the different polymers and the processing parameters on the final cellular structure are studied using a wide range of saturation and foaming conditions. Foaming conditions affect similarly all cellular materials. It is found that an increase of the foaming temperature results in less dense nanocellular materials, with higher cell nucleation densities. In addition, it is demonstrated that a lower viscosity leads to cellular polymers with a lower relative density but larger cell sizes and smaller cell nucleation densities, these differences being more noticeable for the conditions in which low solubilities are reached. It is possible to produce nanocellular materials with relative densities of 0.24 combined with cell sizes of 75 nm and cell nucleation densities of 1015 nuclei cm?3 using the PMMA with the lowest viscosity. In contrast, minimum cell sizes of around 14 nm and maximum cell nucleation densities of 3.5 × 1016 nuclei cm?3 with relative densities of 0.4 are obtained with the most viscous one. © 2019 Society of Chemical Industry  相似文献   

5.
In this study, we mainly investigate the solid‐state foaming of polyether ether ketone (PEEK) with different crystallinities using supercritical CO2 as a physical blowing agent. The gaseous mass‐transfer and thermophysical behaviors were studied. By altering the parameters of the foaming process, microcellular foams with different cell morphologies were prepared. The effect of crystallization on the cell morphology was also investigated in detail. The results indicate that the crystallization restricts gas diffusion in the material, and the thermophysical behaviors of the saturated PEEK sample with low crystallinity presents two cold crystallization peaks. The cell density decreases and the cell size increases as the saturation pressure increases. The cell density of the microcellular foams prepared under 20 MPa is 1.23 × 1010 cells/cm3, which is almost 10 times compares to that under 8 MPa. The cell size increases as the foaming time extends or the foaming temperature increases. It is interesting that the cell morphology with a bimodal cell‐size distribution is generated when the samples are foamed at temperatures higher than 320°C for a sufficient time. Additionally, nanocellular foams can be obtained from a highly crystallized PEEK after the decrystallization process. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42576.  相似文献   

6.
The effects of nanoclay on the crystallization behavior, microcellular structure, and mechanical properties of thermoplastic polyurethane (TPU)/clay nanocomposite (TPUCN) foams were investigated using differential scanning calorimetry, rheometry, scanning electron microscope, transmission electron microscopy, and X‐ray diffraction. It was found that the nanoclay acted as an effective nucleating agent for both crystal nucleation and cell nucleation. As a result, it significantly enhanced the crystallization behavior of the hard segment (HS) domains in TPU while refining the foamed structure of the microcellular injection molded parts. In particular, the average cell diameter of TPUCN foams decreased from 45 µm for neat TPU to 27 µm for TPUCN5 (5 wt% clay) and 18 µm for TPUCN10 (10 wt% clay). Furthermore, the cell density increased from 0.7 × 107 cell/cm3 for neat TPU to 1.4 × 107 cell/cm3 and 3.1 × 107 cell/cm3 for TPUCN5 and TPUCN10, respectively. In addition, the tensile strength also increased by 56.3% and 89.2% with 5 and 10 wt% clay content, respectively. By controlling the cell nucleation behavior through uniformly dispersed nanoclay, this study demonstrates that it is feasible to produce TPUCN foams via microcellular injection molding with desirable microcellular structures and improved mechanical properties. POLYM. ENG. SCI., 56:319–327, 2016. © 2015 Society of Plastics Engineers  相似文献   

7.
Microllular plastics are cellular polymers characterized by cell densities greater than 109 cells/cm3 and cells smaller than 10 μm. One of the critical steps in the continuous production of microcellular plastics is the promotion of high cell nucleation rates in a flowing polymer matrix. These high nucleation rates can be achieved by first forming a polymer/gas solution followed by rapidly decreasing the solubility of gas in the polymer. Since, in the processing range of interest, the gas solubility in the polymer decreases as the pressure decreases, a rapid pressure drop element, consisting of a nozzle, has been employed as a continuous microcellular nucleation device. In this paper, the effects of the pressure drop rate on the nucleation of cells and the cell density are discussed. The experimental results indicate that both the magnitude and the cell density are discussed. The experimental results indicate that both the magnitude and the rate of pressure drop play a strong role in microcellular processing. The pressure phenomenon affects the thermodynamic instability induced in the polymer/gas solution and the competition between cell nucleation and growth.  相似文献   

8.
The effect of low-energy ion bombardment of silicon on diamond nucleation was investigated. By bombarding 100 eV ions of methane and hydrogen on a silicon substrate prior to diamond growth by chemical vapor deposition, diamond nucleation can be immensely enhanced. The ion beam treatment deposited a layer of nano-crystalline graphitic carbon embedded with amorphous SiC. Diamond then nucleated on the graphite overlayer; the nucleation density increased with increasing ion dose. At 1×1019 ions cm−2, a nuclei density of 4×108 cm−2 was obtained. These results show that ion bombardment of the substrate enhances diamond nucleation.  相似文献   

9.
Release kinetics of thymoquinone and R ‐(+)‐pulegone impregnated in low‐density polyethylene (LDPE) films into air and the effect of supercritical CO2‐assisted impregnation process on the diffusional properties of these films were investigated. The incorporation of both ketones into LDPE films was performed under different conditions (pressure, depressurization rate, time, and initial ketone mole fraction). Release experiments were performed under controlled laboratory conditions (24 °C, 60% relative humidity), and the total release profile was determined gravimetrically, while the individual release of each ketone was quantified by Fourier transformed infrared. The experimental data were used to fit a mass transfer model based on the second Fick's law for unsteady‐state diffusion, and the diffusion coefficients of both ketones in LDPE were estimated, ranging from 2.35 × 10?13 to 5.53 × 10?13 m2 s?1 (thymoquinone) and from 1.24 × 10?13 to 4.52 × 10?13 m2 s?1 (pulegone). Finally, analysis of variance testing indicated that impregnation pressure and depressurization rate (and their combination) have significant effects on the diffusion coefficient values. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45558.  相似文献   

10.
In this research, highly open‐cell low‐density polyethylene sheet foams are achieved with an annular die by applying various strategies for cell opening, i.e., (i) creation of a structural nonhomogeneity consisting of hard and soft regions with partial crosslinking, (ii) blending of a hard second‐phase material (i.e., polystyrene phase) into the low‐density polyethylene matrix, (iii) plasticization of the soft region with a secondary blowing agent, (iv) decrease of the cell wall thickness by increasing the cell density, and (v) decrease of the cell wall thickness by increasing the expansion ratio while cell walls are soft. Although the higher surface‐to‐volume ratio of the sheet foams compared with filament foams made it challenging to prevent gas loss, highly open‐cell (up to 99%) and microcellular (up to 3.5 × 1010 cells/cm3) foam sheets were successfully manufactured with high‐pressure annular dies using the cell‐opening strategies. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:3376–3384, 2006  相似文献   

11.
The optimum growth parameters of our 5 kW microwave plasma CVD reactor were obtained using CH4/H2/O2 plasma and high quality transparent films can be produced reproducibly. Among the films prepared in this system, the film of best quality has very smooth crystalline facets free of second nucleation and the full width at half maximum (FWHM) of the diamond Raman peak is 2.2 cm−1, as narrow as that of IIa natural diamond. For this study, diamond films were grown on silicon substrates with low (104–105 cm−2) and high nucleation densities (>1010 cm−2), respectively. From the same growth run, a highly 〈110〉 textured 300 μm thick white diamond film with a growth rate of 2.4 μm/h was obtained from high nucleation densities (>1010 cm−2), and a white diamond film of 370 μm in thickness with a higher growth rate of 3 μm/h was obtained from low nucleation densities (5×104–105 cm−2) too. The effect of nucleation density on film quality, growth rate, texture and morphology was studied and the mechanism was discussed. Our results suggest that under suitable growth conditions, nucleation density has little effect on film quality and low nucleation density results in higher growth rate than high nucleation density due to less intense grain growth competition.  相似文献   

12.
Propylene was polymerized in gas phase and liquid phase by using a novel nonporous Ziegler–Natta‐catalyst system. The polymer particles formed at different polymerization times were used for sorption measurements. In both cases it was found that the effective diffusion coefficient is increasing with increasing size of polymer particles and the effective diffusion coefficients of polymer particles formed by liquid‐phase polymerization are larger than those of polymer particles produced by gas‐phase polymerization. The effective diffusion coefficients of polymer particles are in the range of 2 × 10?11 to 1.6 × 10?10 m2/s with activation energies from 34 to 22 kJ/mol. The analyzed polymer particles have average diameters between 250 and 875 μm. The solubility of propylene in polypropylene particles can be described by the law of Henry at conditions studied. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2642–2648, 2006  相似文献   

13.
In this paper we report on a surface treatment to seed substrates for the promotion of diamond nucleation. This surface treatment consists of an ultrasonic abrasion process using poly-disperse slurry composed of a mixture of small diamond particles (<0.25 μm) and larger particles (>3 μm) which may consist of diamond, alumina, titanium, etc. Whereas ultrasonic abrasion with a mono-disperse diamond slurry results in a diamond nucleation density of ∼2–3×108 particles/cm2, treatment with poly-disperse slurries results in diamond nucleation density of values up to ∼5×1010 particles/cm2. This effect was found to display a similar effectiveness on a variety of substrates such as silicon, sapphire, quartz, etc. The enhancement in diamond nucleation is interpreted by a ‘hammering’ effect whereby the larger particles insert very small diamond debris onto the treated surface, thus increasing the density of nuclei onto which diamond growth takes place during the chemical vapor deposition process. By increasing the nucleation density to values of ∼5×1010 particles/cm2, continuous diamond films of thickness of less than ∼100 nm were grown after only 5 min of deposition. The roughness of continuous diamond films grown on substrates treated at optimum conditions obtains values of 15–20 nm. The effect of ultrasonic treatment on silicon substrates and the deposited films was investigated by atomic force microscopy (AFM), high-resolution scanning electron microscopy (HR-SEM), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy.  相似文献   

14.
Microcellular polycarbonate/nano-silica nanocomposites (PCSN) were prepared by temperature rising process using supercritical CO2 as the blowing agent. Neat PC foam showed a quite broad distribution of cell sizes. Under the same foaming conditions, the addition of nano-silica resulted in PCSN foams having uniform cell size distribution, reduced cell size of 0.3-0.5 μm and increased cell density of 1011-1013 cells/cm3. The underlying nucleation mechanism was semi-quantitatively analyzed by the classical nucleation theory. The results indicate that the energy-barrier for heterogeneous nucleation was three orders of magnitude lower than that of homogeneous one. The heterogeneous nucleation of nano-silica aggregates dramatically increased the nucleation rate, decreased the nucleation time interval, and hence facilitated the almost instantaneous growth of cell size. Combined with the well-dispersed nucleation sites, resulted from the uniform dispersion of nano-silica aggregates, the narrow-distributed cell size was obtained in PCSN foams.  相似文献   

15.
《Diamond and Related Materials》2001,10(9-10):1633-1636
Highly 〈111〉-oriented diamond films with azimuthal alignment were successfully deposited on platinum{111}/iridium{111}/platinum{111} formed on sapphire{0001} by microwave enhanced chemical vapor deposition. With oriented nucleation density of approximately 1×108 cm−2, the heteroepitaxial {111}-oriented diamond films were grown over a 10×10 mm2 area without crack or delamination from the substrate. X-Ray diffraction rocking curve of diamond{111} has a full-width at half maximum value of 1.1°, which endorses a high crystal quality of the diamond film. The high density of oriented nucleation and improved adhesion of the diamond can be attributed to the Ir film inserted between the two Pt layers, which hinders diffusion of carbon through the Pt and graphite formation at the Pt/sapphire interface.  相似文献   

16.
17.
The Quartz Crystal Microbalance (QCM) system is utilized to investigate the relationship between mass uptake and associated swelling for Langmuir‐Blodgett (LB) organic thin films obtained from pyrene end‐capped polystyrene (PS). The study was carried out using three different molecular weights of polymeric chains. The changes in resonance frequency associated with mass changes can be attributed to the swelling behavior of polymeric thin films during vapor absorption. This swelling is due to the capturing of organic vapor molecules in the sensor environment. To quantify real‐time QCM data for swelling, early‐time Fick's law of diffusion was adopted to fit the results, and a good linear relationship was observed between the mass uptake and square root of the swelling time. The diffusion coefficients for swelling were thus obtained from the slopes of the fitting curves and was found to be correlation with the amount of organic vapor content in the cell. It was also observed that diffusion of the organic vapor into higher molecular weight polystyrene thin films are much faster than low molecular weight ones in sensor applications. Diffusion coefficients were found to be 0.2–3.0 × 10?16, 5.0–13 × 10?16, and 1.0–1.6 × 10?15 cm2/s for PS1, PS2, and PS3 LB thin films, respectively. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

18.
The effect of Na‐alginate content on the gas permeation properties of water‐swollen membranes prepared by varying Na‐alginate and poly(vinyl alcohol) (PVA) content in membranes was investigated. The influences of water content and crystallinity of the membranes on the gas permeation performance of the water‐swollen membranes were studied. The gas permeation rate and selectivity of Na‐alginate/PVA water‐swollen membranes were compared with those of the dry membranes. The permeation rates of nitrogen and carbon dioxide through water‐swollen membranes were in the range of 0.4–7.6 × 10?7 to 3.7–8.5 × 10?6 cm3 (STP)/cm2 s?1 cmHg?1, which were 10,000 times higher than those of dry‐state membranes. The permeation rates of mixture gases through water‐swollen Na‐alginate/PVA membranes were found to increase exponentially with the increase of Na‐alginate content, whereas carbon dioxide concentration in permeates was decreased linearly. It was found that the gas permeance of the water‐swollen membranes increased with increasing the Na‐alginate content in the membrane. Gas permeation rates of the water‐swollen Na‐alginate/PVA membranes increased with increasing the water content in the membrane and decreasing the crystallinity of the membrane. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3225–3232, 2004  相似文献   

19.
The aim of this work was to study the variations in the oxygen diffusion, solubility, and permeability coefficients of polylactide (PLA) films at different temperatures (5, 23, and 40°C) and water activities (0–0.9). The results were compared with the oxygen diffusion, solubility, and permeability coefficients obtained for poly(ethylene terephthalate) (PET) films under the same experimental conditions. The water sorption isotherm for PLA films was also determined. Diffusion coefficients were determined with the half‐sorption time method. Also, a consistency test for continuous‐flow permeability experimental data was run to obtain the diffusion coefficient with the lowest experimental error and to confirm that oxygen underwent Fickian diffusion in the PLA films. The permeability coefficients were obtained from steady‐state permeability experiments. The results indicated that the PLA films absorbed very low amounts of water, and no significant variation of the absorbed water with the temperature was found. The oxygen permeability coefficients obtained for PLA films (2–12 × 10?18 kg m/m2 s Pa) were higher than those obtained for PET films (1–6 × 10?19 kg m/m2 s Pa) at different temperatures and water activities. Moreover, the permeability coefficients for PLA and PET films did not change significantly with changes in the water activity at temperatures lower than 23°C. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1790–1803, 2004  相似文献   

20.
A new method for determining the molecular diffusivity of oxygen in liquids is described. The technique was applied through a flat air–liquid interface in a Hele‐Shaw cell (5 × 5 × 0.2 cm3) and was based on planar laser‐induced fluorescence (PLIF) with inhibition. A ruthenium complex (C72H48N8O6Ru) was used as the fluorescent dye sensitive to oxygen. A mathematical analysis was developed to determine the molecular diffusivity of oxygen simply by localizing the gas diffusion front. The specificity of this mathematical analysis is that it does not require the properties of the fluids (such as the saturation concentration) to be considered, which is especially relevant for complex media that are sometimes difficult to characterize properly. This technique was applied to three different fluids (viscosities ranging from 1 to 2.4 mPa·s) corresponding to binary diffusion coefficients ranging from 9.5 × 10?10 to 2 × 10?9 m2/s. Experimental data were found with an uncertainty of about 5% and were in good agreement with the literature. Particle image velocimetry and numerical simulations were also carried out to determine the optimal gas flow rate (0.01 L/s) to reach purely diffusive transfer, and the corresponding hydrodynamic profiles of the two phases. © 2012 American Institute of Chemical Engineers AIChE J, 59: 325–333, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号