首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An interpenetrating polymer network (IPN) hydrogel composed of poly(vinyl alcohol) (PVA) and chitosan exhibited electric‐sensitive behavior. The PVA/chitosan IPN hydrogel was synthesized by an ultraviolet (UV) irradiation method that is used in several biomedical and industrial fields. The swelling behavior of the PVA/chitosan IPN hydrogel was studied by immersion of the gel in NaCl aqueous solutions at various concentrations. The swelling ratio decreased with increasing concentration of NaCl solution. The stimuli response of the IPN hydrogel in electric fields was also investigated. When a swollen PVA/chitosan IPN was placed between a pair of electrodes, the IPN exhibited bending behavior in response to the applied electric field. The bending angle and the bending speed of the PVA/chitosan IPN increased with increasing applied voltage and concentration of NaCl aqueous solution. The PVA/chitosan IPN also showed stepwise bending behavior depending on the electric stimulus. In addition, thermal properties of PVA/chitosan IPN were investigated by differential scanning calorimetry (DSC) and dielectric analysis (DEA). © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2285–2289, 2002  相似文献   

2.
In this work we report the photopolymerization of poly(2‐hydroxyethyl methacrylate) (PHEMA) together with a hydrophilic chitosan derivate (carboxymethyl‐chitosan) to yield a semi‐interpenetrating polymer network (semi‐IPN) that was filled with poly(N‐vinylcaprolactam)/poly(ethylene glycol methacrylate) core–shell nanogels in order to enhance the mechanical properties of the resulting hydrogels. The mechanical properties of the nanofilled semi‐IPNs were found to be more suitable for wound dressing applications than the PHEMA hydrogel as described by dynamic mechanical analysis in dry form and submerged in water. This was evidenced by a higher Young's modulus and higher elongation at break in the semi‐IPNs compared to blank PHEMA hydrogels. Furthermore, when the hydrogels were filled with nanogels, there was an elongation at break similar to that of skin with only a slightly lower Young's modulus. © 2019 Society of Chemical Industry  相似文献   

3.
Semi‐ and full‐interpenetrating polymer network (IPN) hydrogels composed of poly(vinyl alcohol) and polyethyleneimine (PEI) were prepared to investigate the bending behavior under the electric response. To find out the characteristics of the hydrogel in the medium, swelling ratio, and rate and water state of the hydrogels were measured. The swelling ratio of the semi‐IPN hydrogels increased with PEI content in the matrix, whereas that of full‐IPN hydrogels dramatically decrease with increase of PEI contents in the hydrogels. In the water state of hydrogel, the bound water and free water of semi‐IPN hydrogels increased with PEI weight ratio. The full‐IPN hydrogels show the lower free water content in comparison with the semi‐IPN hydrogel. The IPN hydrogels exhibited bending angle change in response to external stimulus such as voltage, the bending angle increased with PEI concentration. In addition, the repeated bending behaviors according to the magnitude of the applied electric field revealed that the bending angle is reversible without collapse of formation of hydrogel in all samples. Thus, the hydrogels will be useful as novel modulation systems in the field of artificial organ and matrix for drug delivery. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

4.
An interpenetrating polymer network (IPN) hydrogel composed of chitosan and polyallylamine exhibited electric‐sensitive behavior. The chitosan/polyallylamine IPN hydrogel was synthesized by radical polymerization using 2,2‐dimethoxy‐2‐phenylacetophenone (DMPAP) and methylene bisacrylicamide (MBAAm) as initiator and crosslinker, respectively. The swelling behavior of the IPN was studied by immersion of the gel samples in aqueous NaCl solutions at various concentrations and pHs. The swelling ratio decreased with increasing concentration and pH of electrolyte solution. The stimuli response of the IPN hydrogel in electric fields was also investigated. When a swollen the IPN was placed between a pair of electrodes, the IPN exhibited bending behavior in response to the applied electric field. The IPN also showed stepwise bending behavior depending on the electric stimulus. In addition, thermal properties of the IPN were investigated by differential scanning calorimetry (DSC) and dielectric analysis (DEA). © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2290–2295, 2002  相似文献   

5.
Poly(2‐acrylamido‐2‐methylpropane sulfonic acid) (PAMPS)/hyaluronic acid (HA) interpenetrating polymer network (IPN) hydrogels have been prepared by using the sequential‐IPN method. The IPN hydrogels exhibited swelling behavior in solutions at various pHs, in NaCl solutions, and under electrical DC stimulation. The IPN hydrogels were highly swollen in water, but lost much of their water capacity when transferred to solutions having a high ionic strength. The IPN hydrogels showed a significant responsive deswelling in an applied electric field. This behavior indicates the potential application of IPN hydrogels as biomaterials. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1731–1736, 2004  相似文献   

6.
Semi‐interpenetrating polymer networks (semi‐IPNs), composed of chitosan and poly(hydroxy ethyl methacrylate) hydrogels, were prepared and the effects of various pH, temperatures, and an electric‐field on the swollen hydrogels were investigated. The swelling kinetics increased rapidly, reaching equilibrium within 60 min. Semi‐IPN hydrogels exhibited relatively high swelling ratios, 150~350%. The swelling ratio increased when the pH of the buffer was below pH 7 as a result of the dissociation of ionic bonds. Semi‐IPN hydrogels showed electroresponsiveness by shrinking when an electric field was applied. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 86–92, 2005  相似文献   

7.
An interpenetrating polymer network (IPN) composed of polymethacrylic acid (PMAA) and poly(vinyl alcohol) (PVA) was prepared and exhibited electrical sensitivity behavior. The swelling behavior of the PMAA/PVA IPN hydrogel was studied by immersion of the gel in aqueous NaCl solutions at various concentrations and pH values. The stimuli response of the PMAA/PVA IPN hydrogel in electric fields was also investigated. When swollen IPN hydrogel was placed between a pair of electrodes, the PMAA/PVA IPN hydrogel exhibited bending behavior upon the application of an electric field. The PMAA/PVA IPN hydrogel also showed stepwise bending behavior depending on the electric stimulus. Also, for biomedical applications, the bending behavior of PMAA/PVA IPN hydrogel in Hank's solution at pH 7.4 was studied. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91:3613–3617, 2004  相似文献   

8.
Temperature‐ and pH‐responsive semi‐interpenetrating polymer network (semi‐IPN) hydrogels constructed with chitosan and polyacrylonitrile (PAN) were studied. The characterizations of semi‐IPN hydrogels were investigated using Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). IPN hydrogels exhibited a relatively high swelling ratio, 23.31%–145.20% at room temperature. The swelling ratio of hydrogels depends on pH and temperature. DSC was used to determine the amount of free water in IPN hydrogels. The amount of free water increased with increasing chitosan content in the semi‐IPN hydrogels. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 87: 2011–2015, 2003  相似文献   

9.
Copolymers composed of poly(vinyl alcohol) (PVA) and poly(dimethylsiloxane) (PDMS) were crosslinked with chitosan to prepare semi‐interpenetrating polymer network (IPN) hydrogels by an ultraviolet (UV) irradiation method for application as potential biomedical materials. PVA/PDMS copolymer and chitosan was cast to prepare hydrogel films, followed by a subsequent crosslinking with 2,2‐dimethoxy‐2‐phenylacetophenone as a nontoxic photoinitiator by UV irradiation. Various semi‐interpenetrating polymer networks (semi‐IPNs) were prepared from different weight ratios of chitosan and the copolymer of PVA/PDMS. Photocrosslinked hydrogels exhibited an equilibrium water content (EWC) in the range of 65–95%. Swelling behaviors of these hydrogels were studied by immersion of the gels in various buffer solutions. Particularly, the PCN13 as the highest chitosan weight ratio in semi‐IPN hydrogels showed the highest EWC in time‐dependent and pH‐dependent swelling. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2591–2596, 2002  相似文献   

10.
Semi‐interpenetrating polymer network (semi‐IPN) and fully interpenetrating polymer network (full‐IPN) hydrogels composed of alginate and poly(N‐isopropylacrylamide) were prepared with γ‐ray irradiation. The semi‐IPN hydrogels were prepared through the irradiation of a mixed solution composed of alginate and N‐isopropylacrylamide (NIPAAm) monomer to simultaneously achieve the polymerization and self‐crosslinking of NIPAAm. The full‐IPN hydrogels were formed through the immersion of the semi‐IPN film in a calcium‐ion solution. The results for the swelling and deswelling behaviors showed that the swelling ratio of semi‐IPN hydrogels was higher than that of full‐IPN hydrogels. A semi‐IPN hydrogel containing more alginate exhibited relatively rapid swelling and deswelling rates, whereas a full‐IPN hydrogel showed an adverse tendency. All the hydrogels with NIPAAm exhibited a change in the swelling ratio around 30–40°C, and full‐IPN hydrogels showed more sensitive and reversible behavior than semi‐IPN hydrogels under a stepwise stimulus. In addition, the swelling ratio of the hydrogels continuously increased with the pH values, and the swelling processes were proven to be repeatable with pH changes. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4439–4446, 2006  相似文献   

11.
Interpenetrating polymer networks (IPNs) prepared from poly(methacrylic acid) (PMAAc) and sodium alginate (SA) exhibited electrical sensitive behavior. The swelling behavior of the PMAAc/SA IPN hydrogel was studied by immersion of the gel into aqueous HCl solutions at various concentrations and into various pH buffer solutions, and their responses to electric fields were also investigated. When swollen IPN hydrogel was placed between a pair of electrodes it exhibited bending behavior on application of an electric field, and showed stepwise bending behavior depending on the magnitude of the electrical stimulus. Copyright © 2004 Society of Chemical Industry  相似文献   

12.
Amphiphilic semi‐interpenetrating polymer networks (semi‐IPN) hydrogels were prepared by a sequential‐IPN method by acrylic acid graft copolymerization into cationic starch in mild aqueous media of poly(dimethyldiallylammonium chloride). Some main factors were investigated to evaluate the swelling of hydrogels, and the network parameters Mc were given accordingly to elaborate the interaction between polymers. The chemical structure of the resulting hydrogel was confirmed using Fourier transform infrared spectroscopy. The cationic starch‐based semi‐IPN hydrogels achieved a high swelling capacity of 1070 g/g in deionized water and 94 g/g in 0.9 wt % NaCl solution, respectively) and high compressive stress in a high water content. Besides, a different pH‐dependent behavior was found for this semi‐IPN hydrogel. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

13.
Temperature‐responsive semi‐interpenetrating polymer networks (semi‐IPNs) constructed with chitosan and polyacrylonitrile (PAN) were crosslinked with glutaraldehyde. The semi‐IPN determined the sorption behavior of water at several temperatures and at a relative humidity (RH) of 95% using a dynamic vapor sorption (DVS) system. Water diffusion coefficients of semi‐IPNs were calculated according to the Fickian Law at several temperatures and exhibited a relatively water uptake, 0.1–0.4 at room temperature. The water uptake of hydrogels depended on temperature. The apparent activation energy was dependent of the composition of the semi‐IPN with value of 32.8–34.8 kJmol?1. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 12: 2721–2724, 2003  相似文献   

14.
Interpenetrating polymer network (IPN) hydrogels based on poly(vinyl alcohol) (PVA) and poly(acrylamide‐co‐sodium methacrylate) poly(AAm‐co‐SMA) were prepared by the semi IPN method. These IPN hydrogels were prepared by polymerizing aqueous solution of acrylamide and sodium methacrylate, using ammonium persulphate/N,N,N1,N1‐tetramethylethylenediamine (APS/TMEDA) initiating system and N,N1‐methylene‐bisacrylamide (MBA) as a crosslinker in the presence of a host polymer, poly(vinyl alcohol). The influence of reaction conditions, such as the concentration of PVA, sodium methacrylate, crosslinker, initiator, and reaction temperature, on the swelling behavior of these IPNs was investigated in detail. The results showed that the IPN hydrogels exhibited different swelling behavior as the reaction conditions varied. To verify the structural difference in the IPN hydrogels, scanning electron microscopy (SEM) was used to identify the morphological changes in the IPN as the concentration of crosslinker varied. In addition to MBA, two other crosslinkers were also employed in the preparation of IPNs to illustrate the difference in their swelling phenomena. The swelling kinetics, equilibrium water content, and water transport mechanism of all the IPN hydrogels were investigated. IPN hydrogels being ionic in nature, the swelling behavior was significantly affected by environmental conditions, such as temperature, ionic strength, and pH of the swelling medium. Further, their swelling behavior was also examined in different physiological bio‐fluids. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 302–314, 2005  相似文献   

15.
Semi‐interpenetrating polymer network (IPN) hydrogels, with acrylic acid (AA) and poly(diallydimethylammonium chloride) (PDMDAAC), were constructed by a sequential IPN method. The characterizations of the IPN hydrogels were investigated by FTIR, DTA, and swelling tests under various conditions. The prepared semi‐IPN hydrogels exhibited relatively high swelling capacity, in the range of 477–630 g/g at 25°C. The results show that the swelling capacity of AA/PDMDAAC semi‐IPN hydrogels was pH and temperature dependent. Swelling behaviors were also studied in the different salt solutions. Swelling kinetic parameters are given. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 345–350, 2007  相似文献   

16.
Semi-interpenetrating network (semi-IPN) polymer gels and interpenetrating network (IPN) polymer gels with thermosensitivity were prepared by introducing a biodegradable polymer, chitosan, into the N-isopropyacrylamide (PNIPAAm) gel system. The swelling behavior, temperature sensitivity, pH sensitivity, gel strength, and drug-release behavior of PNIPAAm/chitosan semi-IPN and IPN hydrogels were investigated. The results indicated that the NIPAAm/chitosan semi-IPN and IPN hydrogels exhibited pH and temperature-sensitivity behavior and could slow drug release and diffusion from the gels. From the stress–strain curves of the hydrogels, the compression moduli of IPN gels containing crosslinked chitosan were higher than those of semi-IPN gels. This is because IPN gels have a more compact structure. The morphology of PNIPAAm/chitosan hydrogels was also investigated. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 2487–2496, 2001  相似文献   

17.
To enhance the mechanical strength of poly(ethylene glycol)(PEG) gels and to provide functional groups for surface modification, we prepared interpenetrating (IPN) hydrogels by incorporating poly(2‐hydroxyethyl methacrylate)(PHEMA) inside PEG hydrogels. Formation of IPN hydrogels was confirmed by measuring the weight percent gain of the hydrogels after incorporation of PHEMA, as well as by ATR/FTIR analysis. Synthesis of IPN hydrogels with a high PHEMA content resulted in optically transparent and extensively crosslinked hydrogels with a lower water content and a 6 ~ 8‐fold improvement in mechanical properties than PEG hydrogels. Incorporation of less than 90 wt % PHEMA resulted in opaque hydrogels due to phase separation between water and PHEMA. To overcome the poor cell adhesion properties of the IPN hydrogels, collagen was covalently grafted to the surface of IPN hydrogels via carbamate linkages to hydroxyl groups in PHEMA. Resultant IPN hydrogels were proven to be noncytotoxic and cell adhesion study revealed that collagen immobilization resulted in a significant improvement of cell adhesion and spreading on the IPN hydrogel surfaces. The resultant IPN hydrogels were noncytotoxic, and a cell adhesion study revealed that collagen immobilization improved cell adhesion and spreading on the IPN hydrogel surfaces significantly. These results indicate that PEG/PHEMA IPN hydrogels are highly promising biomaterials that can be used in artificial corneas and a variety of other load‐bearing tissue engineering applications. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

18.
The thermodynamic miscibility and thermal and dynamic mechanical behaviour of semi‐interpenetrating polymer networks (semi‐IPNs) of crosslinked polyurethane (PU) and linear poly(hydroxyethyl methacrylate) (PHEMA) have been investigated. The free energies of mixing of the semi‐IPN components have been determined by the vapour sorption method and it was established that the parameters are positive and depend on the amount of PHEMA in the semi‐IPN samples. Thermal analyses glass transition temperatures evidenced two in the semi‐IPNs in accordance with the investigation of the thermodynamic miscibility of these systems. Dynamic mechanical analysis revealed a pronounced change in the viscoelastic properties of the PU‐based semi‐IPNs with different amounts of PHEMA in the samples. The semi‐IPNs have two distinct tan δ maxima related to the relaxations of the two polymers in their glass temperature domains. The temperature position of PU relaxation maximum tan δ is invariable but its amplitude decreases in the semi‐IPNs with increasing amount of PHEMA in the systems. The tan δ maximum of PHEMA is shifted to a lower temperature and its amplitude decreases with increasing amount of PU in the semi‐IPNs. The segregation degree of components α was calculated using the viscoelastic properties of semi‐IPNs. It was concluded that the studied semi‐IPNs are two‐phase systems with incomplete phase separation. The different levels of immiscibility lead to the different degree of phase separation in the semi‐IPNs with compositions. Copyright © 2004 Society of Chemical Industry  相似文献   

19.
Temperature‐sensitive poly(N‐isopropylacrylamide) hydrogels were successfully synthesized by using poly(ethylene oxide) as the interpenetrating agent. The newly prepared semi‐interpenetrating polymer network (semi‐IPN) hydrogels exhibited much better properties as temperature‐sensitive polymers than they did in the past. Characterizations of the IPN hydrogels were investigated using a swelling experiment, FTIR spectroscopy, and differential scanning calorimetry (DSC). Semi‐IPN hydrogels exhibited a relatively high temperature dependent swelling ratio in the range of 23–28 at room temperature. DSC was used for the determination of the lower critical solution temperature of the semi‐IPN hydrogel. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3032–3036, 2003  相似文献   

20.
Temperature‐ and pH‐responsive semiinterpenetrating polymer network (SIPN) hydrogels, constructed with chitosan (CS) and poly(diallyldimethylammonium chloride) (PDADMAC), were studied. The characterizations of the IPN hydrogels were investigated by fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and swelling tests, under various conditions. CS/PDADMAC SIPN hydrogels exhibited a relatively high swelling ratio, in the range of 248–462%, at 25°C. The swelling ratio of CS/PDADMAC IPN hydrogels are pH, temperature, and ionic concentration dependent. DSC was used for the quantitative determination of the amounts of freezing and nonfreezing water. The amount of free water increased with increasing PDADMAC content in the IPN hydrogels. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2876–2880, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号