首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of inorganic salts addition on the complex formation of poly(acrylic acid) with various non‐ionic polymers such as poly(vinyl pyrrolidone), poly(acrylamide), poly(ethylene oxide), pol(vinyl methyl ether), poly(vinyl alcohol), poly(N‐isopropylacrylamide), poly(2‐hydroxyethyl vinyl ether), hydroxypropylcellulose and hydroxyethylcellulose has been studied in aqueous solutions. It was found that, depending on the nature of the polymers and pH medium, addition of inorganic salts could increase or decrease the critical pH values of complexation. A new classification of interpolymer complexes based on critical pH values and ionic strength effects is suggested. Copyright © 2004 Society of Chemical Industry  相似文献   

2.
Complex formation between poly(acrylic acid) and methylcellulose in aqueous solutions has been studied by viscometric and turbidimetric methods. The critical pH values in their dependence of polymer concentration were determined. The influence of the nature of a nonionic polymer on the composition and stability of interpolymer complexes is shown. The phase behaviour of acrylic acid‐graft‐methylcellulose copolymer in aqueous solutions is analysed from their complexation point of view. © 2000 Society of Chemical Industry  相似文献   

3.
Poly(vinyl pyrrolidone) (PVP)/poly(acrylic acid) (PAA) interpolymer complexes were prepared, in ethanol or dimethylformamide (DMF), by template polymerization of acrylic acid in the presence of PVP (MW: 42.5 or 1100 K) used as the template. FTIR analysis showed that the complexes were formed through hydrogen bonding between the carboxyl groups of the PAA and the carbonyl groups of the PVP. The glass‐transition temperature (Tg) of the complex, prepared in ethanol, was higher than that of the component polymers, whereas the Tg of the complex, prepared in DMF, was located between that of the component polymers. The dissolution rate of the complex was affected by the molecular weight of the PVP and the reaction solvent. The release rate of ketoprofen from the complexes showed a pH dependency, and was slower at a lower pH. The ketoprofen release rate from the complex was controlled mainly by the dissolution rate of the complex above the pKa of PAA (4.75) and by the diffusion rate below the pKa. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 2390–2394, 2004  相似文献   

4.
The hydrogen‐bonding interaction and interpolymer complex formation between an alternating maleic acid–vinyl acetate copolymer, (MAc‐alt‐VA) and poly(ethylene glycol) (PEG), polyacrylamide (PAM) or poly(N‐isopropylacrylamide) (PNIPAM) in aqueous solution was potentiometrically and viscometrically investigated. MAc‐alt‐VA formed with PEG a strong hydrogen‐bonding interpolymer complex with a compact structure, and while its interaction with PAM seems to be very weak, if any, the complex formed with PNIPAM is even stronger than that with PEG. This indicates a very important contribution of hydrophobic interaction to the formation of such hydrogen‐bonding interpolymer complexes. Copyright © 2003 Society of Chemical Industry  相似文献   

5.
Graft copolymers containing poly(ethylene oxide) side chain attached to maleic anhydride‐alt‐vinyl methyl ether (MA‐VME) copolymer were prepared by coupling MA‐VME and poly(ethylene glycol) monomethyl ether (MPEG) by esterification in DMF at 90°C. MPEG and dodecyl alcohol (DA) were grafted onto MA‐VME copolymer in o‐xylene at 140°C in the presence of p‐toluene sulfonic acid as catalyst. The molecular weights of MPEG were found to influence the rate of the grafting reaction and the final degree of conversion. The graft copolymers were characterized by IR, GPC, and 1H‐NMR. DSC was used to examine thermal properties of the graft copolymers. The analysis indicates that grafts have phase‐separated morphology with the backbone and the MPEG grafts forming separate phases. The properties in aqueous solutions of these grafts were studied with respect to aggregation behavior and viscometric properties. In aqueous solution, the polymers exhibited polyelectrolyte behavior (i.e., a dramatic increase of the viscosity upon neutralization). Graft copolymers with DA have lower viscosities. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1138–1148, 2002  相似文献   

6.
Clear blends of chitosan with poly(N‐vinyl‐2‐pyrrolidone) (PVP) made from aqueous solutions appear to be miscible from visual appearance. Infrared (IR) spectra used to investigate the carbonyl—hydroxyl hydrogen bonding in the blends indicated compatibility of two polymers on a molecular level. The IR spectra were also used to determine the interaction change accessing with increasing temperature and indicated that a significant conformational change occurred. On the other hand, the blend membranes were evaluated for separation of methanol from methyl tert‐butyl ether. The influences of the membrane and the feed compositions were investigated. Methanol preferentially permeates through all the tested membranes, and the partial flux of methanol significantly increase with the poly(N‐vinyl‐2‐pyrrolidone) content increasing. The temperature dependence of pervaporation performance indicated that a significant conformational change occurred with increasing temperature. Combined with the IR results, the pervaporation properties are in agreement with characteristics of interaction between chain–chain within the blend membranes. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1452–1458, 1999  相似文献   

7.
Blends of poly(vinyl alcohol) (PVA), poly(acrylic acid), (PAA), and poly(vinyl pyrrolidone) (PVP), with poly(N‐isopropylacrylamide) (PNIPAM), were prepared by casting from aqueous solutions. Mechanical properties of PNIPAM/PVA blends were analyzed by stress–strain tests. Differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) were employed to analyze the miscibility between the polymeric pairs. The results revealed that PNIPAM is not miscible with PVA and PVP in the whole range of composition. On the other hand, PNIPAM interacts strongly with PAA forming interpolymer complex due to the formation of cooperative hydrogen bonds. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 743–748, 2004  相似文献   

8.
The controlled formation of aragonite by simple method under ambient condition is a big challenge for biomaterial scientists. In this article, we took poly (N‐vinyl pyrrolidone) (PVP) as an example to investigate the influence of water‐soluble nonionic polymers on the polymorphs of CaCO3 via CO2 diffusion method under ambient pressure and temperature, and found that the existence of PVP molecules favors the formation of aragonite with rosette superstructure. A possible mechanism is proposed that nonionic polymers can be doped into amorphous calcium carbonate (ACC) particles and further participate in the transformation process from ACC to aragonite and then promotes the formation of rosette superstructure through parallel aggregation by crosslinking the aragonite nuclei. The experiments of CaCO3 crystallization in presence of poly(ethylene oxide) (PEO) and poly(vinyl alcohol) (PVA) confirmed the mechanism. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

9.
Amphipathic, stimuli‐responsive water‐soluble polymers have been investigated as potential remediation agents for micellar enhanced ultrafiltration (MEUF). The systems represent divergent architectural types, a triblock ABA copolymer of PEO‐PPO‐PEO, an n‐octylamide modified poly(sodium maleate‐alt‐ethyl vinyl ether), and the transport protein, bovine serum albumin. Each type exhibits stimuli‐dependent microphase separation or domain formation in response to temperature, pH, and/or ionic strength changes. Segmental associations result in hydrophobic clusters resembling those present in small molecule surfactant micelles. The effects of such segmental aggregation on sequestration of a model hydrophobic foulant, p‐cresol, have been investigated using equilibrium dialysis. The favorable molar binding values, the large hydrodynamic dimensions of the stable polymer aggregates, and potential reversibility of foulant loading could have commercial utility in high flow rate, multiple‐pass remediation processes. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2290–2300, 1999  相似文献   

10.
Poly(ethylene‐co‐vinyl acetate) with 55 wt % vinyl acetate units (EVA55) was cryogenically ground and saponified in KOH/ethanol solution to obtain poly(ethylene‐co‐vinyl alcohol) (EVOH55). Polymeric antimicrobial agents were synthesized by reacting three antimicrobial agents, 4‐aminobenzoic acid (ABA), salicylic acid (SA), and 4‐hydroxy benzoic acid (HBA) with EVOH55. The polymers became more flexible and exhibited lower melting peak temperature and heat of fusion as the content of the chemically bound ABA, SA, and HBA units increased. These phenomena appeared more significant in the order of ABA < HBA < SA. S. aureus, Gram‐positive bacterium, was more susceptible to the polymeric antimicrobial agents than P. aeruginesa, Gram‐positive bacterium. The antimicrobial activity increased in the order of EVOH55‐HBA < EVOH55‐ABA < EVOH‐SA. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 765–770, 2004  相似文献   

11.
Polysilphenylenesiloxanes containing various amounts of vinyl substituents (ranging from partial (25 %) to complete (100 %)) on the silicon atoms were synthesized. 29Si NMR spectroscopy revealed that they had a well defined structure, as designed. Unlike the known crystalline poly(tetramethyl‐p‐silphenylenesiloxane), all polymers containing vinyl side groups were amorphous and showed low Tgs, ranging from ?52 to ?32 °C (from differential scanning calorimetry (DSC)). Dynamic and isothermal thermogravimetric (TG) analyses indicated that they all possessed a greatly improved thermal stability up to 500 °C, and have ultra‐high residual yields at 1000 °C under both inert and oxidative conditions. Polysilphenylenesiloxanes containing a high percentage of vulcanizable vinyl substituents should be excellent candidates for high‐temperature polymers and have potential applications such as heat‐resistant or flame‐retardant materials. Copyright © 2004 Society of Chemical Industry  相似文献   

12.
Fourier transform infrared spectroscopy (FTIR) and electrical measurements were used for the characterization of the interpolymer complexation between poly(acrylic acid) (PAA) and poly(acrylamide) (PAAm) and also the ternary PAA–metal–PAAm complexes. The interpolymer complexes were prepared by adjusting the pH value of the mixture solutions at different PAA weight fractions (WPAA). The ternary complexes were prepared by mixing metal chloride solutions (such as ErCl3 and LaCl3) with different concentrations to PAA–PAAm mixtures and adjusting the pH value for different WPAA. It was found that the IR spectra of the interpolymer complexes showed absorption bands at shifted positions and of intensities different from those of the parent polymers. Also, the examination of the spectra of the ternary metal–polymer complexes revealed that they depend on the nature, lency, ionic radius, and concentration of the added metal chlorides. Analysis of the electrical results showed that the electrical conductivity of the interpolymer complexes are always lower than those of PAA and PAAm, which was attributed to the decrease in the mobility of the polymer chains as a result of the complexation. Also, the conductivity of the ternary metal complexes showed a dependence on the properties of the additives and were found to decrease with increasing their concentrations. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2699–2705, 2002  相似文献   

13.
Interpolymer complexes and blends were prepared based on poly(acrylic acid) and hydroxypropylcellulose. The structural features of polycomplexes and blends were evaluated by scanning electron microscopy and thermal analysis. It was found that the interpolymer complex obtained as a result of co‐precipitation of the polymeric components is characterized by an uniform structure which indicates the complete miscibility between the components. Films were prepared based on blends of neutralized poly(acrylic acid) and hydroxypropylcellulose. In this case the two components resulted immiscible because of the lack of intermolecular hydrogen bonding. Copyright © 2004 Society of Chemical Industry  相似文献   

14.
The radical‐initiated terpolymerization of 3,4‐dihydro‐2H‐pyran (DHP), maleic anhydride (MA), and vinyl acetate (VA), which were used as a donor–acceptor–donor system, was carried out in methyl ethyl ketone in the presence of 2,2′‐azobisisobutyronitrile as an initiator at 65°C in a nitrogen atmosphere. The synthesis and characterization of binary and ternary copolymers, some kinetic parameters of terpolymerization, the terpolymer‐composition/thermal‐behavior relationship, and the antitumor activity of the synthesized polymers were examined. The polymerization of the DHP–MA–VA monomer system predominantly proceeded by the alternating terpolymerization mechanism. The in vitro cytotoxicities of poly(3,4‐dihydro‐2H‐pyran‐alt‐maleic anhydride) [poly(DHP‐alt‐MA)] and poly(3,4‐dihydro‐2H‐pyran‐co‐maleic anhydride‐co‐vinyl acetate) [poly(DHP‐co‐MA‐co‐VA)] were evaluated with Raji cells (human Burkitt lymphoma cell line). The antitumor activity of the prepared anion‐active poly(DHP‐alt‐MA) and poly(DHP‐co‐MA‐co‐VA) polymers were studied with methyl–thiazol–tetrazolium testing, and the 50% cytotoxic dose was calculated. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2352–2359, 2005  相似文献   

15.
Radical copolymerizations of 1‐vinyl‐2‐pyrrolidone with acrylamide and N,N′‐dimethylacrylamide at different feed ratios were investigated. The copolymers were characterized by Fourier transform infrared spectroscopy, 1H NMR, and 13C NMR spectroscopy. The copolymer composition was determined from the 1H NMR spectra and found to be statistical. The metal complexation of poly(acrylamide‐co‐1‐vinyl‐2‐pyrrolidone) and poly(N,N′‐dimethylacrylamide‐co‐1‐vinyl‐2‐pyrrolidone) for the metal ions Cu(II), Co(II), Ni(II), Cd(II), Zn(II), Pb(II), Fe(III), and Cr(III) were investigated in an aqueous phase. The liquid‐phase polymer‐based retention method is based on the retention of inorganic ions by soluble polymers in a membrane filtration cell and subsequent separation of low‐molecular compounds from the polymer complex formed. The metal ion interaction with the hydrophilic polymers was determined as a function of the pH and the filtration factor. Poly(N,N‐dimethylacrylamide‐co‐1‐vinyl‐2‐pyrrolidone) showed a higher affinity for the metal ions than poly(acrylamide‐co‐1‐vinyl‐2‐pyrrolidone). According to the interaction pattern obtained, Cr(III) and Cu(II) formed the most stable complexes at pH 7. Pb(II) and Zn(II) were not retained. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 741–750, 1999  相似文献   

16.
A poly(vinyl alcohol) (PVA)/sodium acrylate (AANa) copolymer was synthesized to improve the water solubility of PVA at the ambient temperature. Furthermore, a series of temperature‐responsive acetalyzed poly(vinyl alcohol) (APVA)‐co‐AANa samples of various chain lengths, degrees of acetalysis (DAs), and comonomer contents were prepared via an acid‐catalysis process. Fourier transform infrared and 1H‐NMR techniques were used to analyze the compositions of the copolymers. The measurement of the turbidity change for APVA‐co‐AANa aqueous solutions at different temperatures revealed that the lower critical solution temperature (LCST) of the copolymers could be tailored through the control of the molecular weight of the starting PVA‐co‐AANa, DA, and comonomer ratios. Lower LCSTs were observed for APVA‐co‐AANa with a longer chain length, a higher DA, and fewer acrylic acid segments. In addition, the LCSTs of the APVA‐co‐AANa aqueous solutions appeared to be salt‐sensitive. The LCSTs decreased as the concentration of NaCl increased. Moreover, atomic force microscopy images of APVA‐co‐AANa around the LCST also proved the temperature sensitivity. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

17.
2,4‐Di‐(2′,2′‐dicyanovinyl)‐1‐(2′‐vinyloxyethoxy)benzene and 2,4‐di‐(2′‐carbomethoxy‐2′‐cyanovinyl)‐1‐(2′‐vinyloxyethoxy)benzene were prepared by condensation of 4‐(2′‐vinyloxyethoxy)isophthaldehyde with malononitrile and methyl cyanoacetate, respectively. The two vinyl monomers were polymerized with boron trifluoride etherate as a cationic initiator to yield poly(vinyl ether)s containing two oxybenzylidenemalononitrile and oxybenzylidenecyanoacetate groups, which are effective chromophores for second‐order nonlinear optical applications. These polymers were soluble in common organic solvents such as acetone and dimethyl sulforide. They showed thermal stabilities up to 300 °C from thermogravimetric analysis (TGA), with differential scanning calorimeter (DSC) thermograms giving Tg values in the range 73–87 °C. The second harmonic generation (SHG) coefficients (d33) of poled polymer films were around 1.8 × 10?9 esu, and these polymers showed good long‐term thermal stability for 60 days at room temperature, which is acceptable for nonlinear optical (NLO) device applications. Copyright © 2004 Society of Chemical Industry  相似文献   

18.
The viscoelastic‐plastic properties of various amorphous, glassy polymers [polystyrene (PS), poly(styrene‐acrylonitrile) copolymer (SAN), poly(methyl methacrylate) (PMMA), poly(vinyl chloride) (PVC), polycarbonate (PC)] in the micron and submicron range were investigated by means of load‐displacement analysis from depth‐sensing experiments. Hardness and Young's modulus values decrease rapidly with increasing depth up to a few microns. New data on the glass transition temperature correlation with microhardness are presented. The influence of annealing below the glass transition temperature upon the microhardness for various glassy polymers is pointed out. For PS, the influence of the molecular weight variation and molecular weight distribution on the microhardness is reported. Results are discussed on the basis of an entanglement network model, recently developed to explain the fine structure of crazes in amorphous polymers. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1951–1956, 2004  相似文献   

19.
Temperature sensitive polymers with a lower critical solution temperature (LCST) are used in a variety of industries such as the pharmaceutical, cosmetic, food, and paint. These polymers are generally of the poly(N‐alkylacrylamide) type, of which poly(N‐isopropylacrylamide) (PNIPA) is the most commonly used. More novel poly(N‐alkylacrylamide)s have also been the subject of much attention recently. In this study, N‐alkylacrylamides containing different alkyl groups were synthesized by nucleophylic substitution reactions of various amines with acryloyl chloride. They were polymerized using the solution polymerization method, and the temperature sensitivities of the polymers were investigated. For this purpose, three monomers, N,N‐diethylacrylamide, N‐cyclopropylacrylamide, and 4‐piperidineethanolacrylamide, were synthesized using diethylamine, cyclopropylamine, and 4‐piperidineethanol, as the amines, respectively. The obtained polymers, poly(N,N‐diethylacrylamide) (PDEA), poly(N‐cyclopropylacrylamide) (PCPA), and poly(4‐piperidineethanolacrylamide) (PPEA), were found to be thermoresponsive, particularly PPEA is a potential novel material that can be utilized as an alternative to the common temperature sensitive polymers. The effects of several conditions on the LCST and the critical flocculation temperature (CFT) of the polymers were also investigated. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

20.
The miscibility of five chitosan/tertiary amide polymer blend systems was studied. Based on the optical transparency of the blend and the existence of a single glass transition temperature, chitosan was found to be miscible with poly(N‐vinyl‐2‐pyrrolidone), poly(N‐methyl‐N‐vinylacetamide), poly(N,N‐dimethylacrylamide), poly(2‐methyl‐2‐oxazoline), and poly(2‐ethyl‐2‐oxazoline). Fourier transform infrared spectroscopy showed the existence of hydrogen‐bonding interactions between chitosan and the tertiary amide polymers. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1785–1790, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号