首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An effective condition of graft polymerization of acrylonitrile onto cellulose fiber in large volume of KMnO4/citric acid aqueous solution was examined and the produced grafted copolymers were characterized by using SEM, NMR, FTIR, XRD, TGA, and DSC in comparison with component homopolymers. Graft yield, GY, obtained by simple weighting method was close to the value obtained by NMR analysis. Significant change of chemical structure in cellulose fiber, other than graft reaction, was not detected by NMR and FTIR measurements, whereas a decrease in the degree of crystallinity by the reaction was detected by XRD measurement. It was pointed out that thermograms for grafted samples resembles with that of cellulose at T < 370°C and become similar with that for polyacrylonitrile at T > 370°C and the mass of residue at 550°C is proportional to the content of polyacrylonitrile (GY) only. It is concluded that thermal decomposition of both polymers occurs almost independently in grafted polymers and thermal stability of cellulose fiber is not improved. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

2.
Cellulose nanocrystals (CNCs) are ideal reinforcing agents for polymer nanocomposites because they are lightweight and nano‐sized with a large aspect ratio and high elastic modulus. To overcome the poor compatibility of hydrophilic CNCs in non‐polar composite matrices, we grafted poly(methyl methacrylate) (PMMA) from the surface of CNCs using an aqueous, one‐pot, free radical polymerization method with ceric ammonium nitrate as the initiator. The hybrid nanoparticles were characterized by CP/MAS NMR, X‐ray photoelectron spectroscopy, infrared spectroscopy, contact angle, thermogravimetric analysis, X‐ray diffraction, and atomic force microscopy. Spectroscopy demonstrates that 0.11 g/g (11 wt %) PMMA is grafted from the CNC surface, giving PMMA‐g‐CNCs, which are similar in size and crystallinity to unmodified CNCs but have an onset of thermal degradation 45 °C lower. Nanocomposites were prepared by compounding unmodified CNCs and PMMA‐g‐CNCs (0.0025–0.02 g/g (0.25–2 wt %) loading) with PMMA using melt mixing and wet ball milling. CNCs improved the performance of melt‐mixed nanocomposites at 0.02 g/g (2 wt %) loading compared to the PMMA control, while lower loadings of CNCs and all loadings of PMMA‐g‐CNCs did not. The difference in Young's modulus between unmodified CNC and polymer‐grafted CNC composites was generally insignificant. Overall, ball‐milled composites had inferior mechanical and rheological properties compared to melt‐mixed composites. Scanning electron microscopy showed aggregation in the samples with CNCs, but more pronounced aggregation with PMMA‐g‐CNCs. Despite improving interfacial compatibility between the nanoparticles and the matrix, the effect of PMMA‐g‐CNC aggregation and decreased thermal stability dominated the composite performance.  相似文献   

3.
The thermal behavior of vinyl ester resin matrix composites reinforced with jute fibers treated for 2, 4, 6, and 8 h with 5% NaOH was studied with Thermo‐gravimetric analysis and differential scanning calorimetry. The moisture desorption peak shifted to a higher temperature, from 37 to 58.3°C, for all the treated‐fiber composites because of improved wetting of the fibers by the resin and stronger bonding at the interface. The degradation temperature of the vinyl ester resin in the composites was lowered to 410.3°C from that of the neat resin, 418.8°C. The X‐ray diffraction studies showed increased crystallinity of the treated fibers, which affected the enthalpy of the α‐cellulose and hemicellulose degradation. The hemicellulose degradation temperature remained the same (299.7°C) in all the treated‐fiber composites, but the enthalpy associated with the hemicellulose degradation showed an increasing trend in the treated composites with a small increase in the weight loss. This could be attributed to the increased hydrogen bonding between the more accessible ? OH groups of the hemicellulose in the noncrystalline region of the jute fiber and the resin. The degradation temperature of α‐cellulose was lowered from 364.2 to 356.8°C in the treated composites. The enthalpy of α‐cellulose degradation showed a decreasing trend with a lowering of the weight loss. The crystalline regions of the fiber, consisting of closely packed α‐cellulose chains, were bonded with the resin mainly on the surface through hydrogen bonds and became more resistant to thermal degradation; this reduced the weight loss. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 123–129, 2004  相似文献   

4.
The radiation‐induced graft copolymerization of N‐vinyl‐2‐pyrrolidone (NVP) onto polypropylene films was investigated using the mutual method. The grafted polymer was modified with prepared α,β‐unsaturated nitrile (Scheme 1 ). The water uptake of the grafted and modified grafted films was found to increase with the degree of grafting. It was observed that the swelling behavior of the modified grafted films with α‐cyano‐β‐phenyl crotononitrile improved more than that of the film grafted and modified grafted with α‐cyano‐β‐(2‐thienyl)crotononitrile or α‐cyano‐β‐(2‐pyridyl)crotononitrile. The modification process for the grafted substrate was confirmed by IR spectroscopy. No significant improvement was observed in thermal stability for the modified grafted films compared to the grafted films. Scanning electron microscopy (SEM) of the grafted and modified grafted membranes heated to 150°C showed change in the structure and morphology. Improvement in the hydrophilicity and morphology of these membranes with carbonitriles may increase the permeability of those membranes for some practical applications.  相似文献   

5.
Atom transfer radical polymerization (ATRP) was used to grow polyacrylamide from the surface of ethylene–acrylic acid copolymer (EAA) film. The surface functionalization constituted initiator immobilization and surface graft polymerization. All reaction steps were conducted at 24 ± 3°C; polymerization was done in aqueous solution. For initiator immobilization, the carboxylic acid groups on EAA film were converted to acid chloride groups; further reaction with ethanolamines gave hydroxyl groups onto which 2‐bromoisobutyryl bromide initiator was attached. ATR‐FTIR data indicated that 1.64 ± 0.09 times higher initiator density was achieved by using diethanolamine, relative to ethanolamine. Acrylamide monomer was polymerized from the initiator by ATRP to yield nondistorted, transparent films with polymerization times of up to 1 h. For films prepared using diethanolamine, 1 h polymerization time reduced the static water contact angle by more than 50°, significantly increasing the hydrophilicity of the film surface. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1589–1595, 2004  相似文献   

6.
The synthesis of 3,3′‐azobis(6‐amino‐1,2,4,5‐tetrazine) DAAT is described, obtained with an overall yield of 20% after six reaction steps. DAAT is a new high‐nitrogen energetic material with remarkable thermal stability and insensitivity against friction and impact. DAAT decomposes at relatively high temperatures (>250 °C) releasing one of the highest heats of decomposition ever measured by DSC. The decomposition pathway and its products investigated by thermal analysis are described.  相似文献   

7.
A novel redox system, potassium ditelluratoargentate(III) (DTA)–cellulose, was employed to initiate the graft copolymerization of methyl acrylate onto cellulose in alkali aqueous solution. Grafting parameters, such as total conversion, grafting efficiency and grafting yield, were evaluated comparatively. The dependence of these parameters on temperature, reaction time, initiator concentration and ratio of monomer to cellulose was also investigated. Graft copolymers with high grafting parameters were obtained, which indicated that the DTA–cellulose redox pair is an efficient initiator for cellulose grafting. The proof of grafting was obtained from gravimetric analysis and infrared spectra. A tentative mechanism involving a two‐step single‐electron‐transfer process of DTA is proposed to explain the generation of radicals and initiation. Thermogravimetry, X‐ray diffraction and scanning electron microscopy were also carried out to study the thermal stability, crystallinity and morphology of the grafted copolymers. Copyright © 2004 Society of Chemical Industry  相似文献   

8.
Solvothermal process was successfully developed to graft dibutylmaleate (DBM) onto poly(ethylene‐co‐1‐octene) (POE) with dicumyl peroxide (DCP) as free radical‐initiator. FTIR spectra demonstrate that DBM is successfully grafted onto the backbone of POE by this novel method. The influences of DBM content, DCP concentration, POE concentration, reaction temperature and reaction time on the grafting copolymerization have been investigated in detail through grafting degree (GD). It is worthy to indicate that high grafting degree (above 15%) can be achieved through the one‐pot way when the graft reaction is carried out in 40 mL toluene at 150°C for 5 h with 1.6 g DBM, 6–8 g POE and 0.35 g DCP. This developed solvothermal process is becoming an effective way to prepare POE‐g‐DBM graft copolymers, and can be extended to other systems. In addition, TGA results show that the thermal properties of POE are enhanced after the grafting reaction. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

9.
Graft copolymerization of maleic anhydride (MA) onto poly(3‐hydroxybutyrate) (PHB) was carried out by use of benzoyl peroxide as initiator. The effects of various polymerization conditions on graft degree were investigated, including solvents, monomer and initiator concentrations, reaction temperature, and time. The monomer and initiator concentrations played an important role in graft copolymerization, and graft degree could be controlled in the range from 0.2 to 0.85% by changing the reaction conditions. The crystallization behavior and the thermal stability of PHB and maleated PHB were studied by DSC, WAXD, optical microscopy, and TGA. The results showed that, after grafting MA, the crystallization behavior of PHB was obviously changed. The cold crystallization temperature from the glass state increased, the crystallization temperature from the melted state decreased, and the growth rate of spherulite decreased. With the increase in graft degree, the banding texture of spherulites became more distinct and orderly. Moreover, the thermal stability of maleated PHB was obviously improved, compared with that of pure PHB. Its thermal decomposition temperature was enhanced by about 20°C. In addition, the introduction of the MA group promoted the biodegradability of PHB. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 659–668, 2003  相似文献   

10.
Homogeneous graft copolymerization of acrylonitrile (AN) monomer onto high α‐cellulose was investigated in a lithium chloride/N,N‐dimethyl acetamide (DMAc/LiCl) solvent system. Benzoyl peroxide (BPO) and azobisisobutyronitrile (AIBN) were used as radical initiators. By varying temperature, time, and monomer concentrations in grafting reactions, the optimum conditions for both initiator systems were fixed. The graft yield for the AN–BPO system was higher than that for the AN–AIBN system. The optimum conditions of reactions were at temperatures of 70 and 60°C with initiator concentrations of 0.4% (0.36 mmol) and 2% (1.24 mmol) for the AN–AIBN and AN–BPO systems, respectively, at a monomer concentration of 5% (14.1 mmol) solution. The number of grafts per cellulose chain was in the range from 2.2 to 1.1 for AN–BPO and 0.5 to 2.1 for the AN–AIBN system. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 630–637, 2003  相似文献   

11.
This article describes the graft copolymerization of poly(methyl methacrylate) (PMMA) onto oil‐palm empty fruit bunches (OPEFBs) with a fiber length of less than 75 μm. The graft copolymerization was carried out under a nitrogen atmosphere by a free‐radical initiation technique in an aqueous medium. Hydrogen peroxide and ferrous ions were used as a redox initiator/cocatalyst system. The PMMA homopolymer that formed during the reaction was removed from the grafted copolymers by Soxhlet extraction. Determining the effects of the reaction period, reaction temperature, and monomer concentration on the grafting percentage was the main objective, and they were investigated systematically. The optimum reaction period, reaction temperature, monomer concentration, and initiator concentration were 60 min, 50°C, 47.15 × 10?3 mol, and 3.92 × 10?3 mol, respectively. The maximum percentage of grafting achieved under these optimum conditions was 173%. The presence of PMMA functional groups on OPEFB and the enormous reduction of the hydroxyl‐group absorption band in PMMA‐g‐OPEFB spectra provided evidence of the successful grafting reaction. The improvement of the thermal stability of PMMA‐g‐OPEFB also showed the optimal achievement of the grafting reaction of PMMA onto OPEFB. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
The undesirable properties of natural rubber (NR) can be improved via hydrogenation and graft copolymerization. Hydrogenated NR (HNR) latex was prepared via diimide reduction and then grafted with styrene (ST) or ST/methyl methacrylate (MMA) to form poly(ST)‐graft‐HNR (poly(ST)‐g‐HNR, GHNRS) or poly(ST‐co‐MMA)‐g‐HNR (GHNRSM), respectively. For the grafting of ST monomer onto HNR particles, the %monomer conversion and %grafting efficiency (%GE) were monitored as functions of %hydrogenation, monomer and initiator concentrations, temperature, and time. Under the optimum condition (HNR with 54.3% hydrogenation; 100 phr of ST, 1 phr of initiator at 50°C for 8 h), maximum %conversion and %GE of 44.6% and 36.9%, respectively, were achieved. Thermogravimetric analysis revealed that the HNR grafted with ST or ST/MMA had higher decomposition temperature than an ungrafted one. When these graft products were blended at 10% (w/w) with acrylonitrile‐butadiene‐styrene (ABS) resin, the GHNRS/ABS and GHNRSM/ABS composites exhibited the higher flexural strength and heat aging tolerance compared to the ungrafted HNR/ABS composite. Scanning electron microscopy (SEM) also showed the higher degree of homogeneity at the fractural surface, supporting the higher compatibility between the ABS and the GHNRS or GHNRSM phases in the blends. J. VINYL ADDIT. TECHNOL., 22:100–109, 2016. © 2014 Society of Plastics Engineers  相似文献   

13.
Poly(3‐hydroxy octanoate) (PHO), poly(3‐hydroxy butyrate‐co‐3‐hydroxyvalerate) (PHBV), and linoleic acid were grafted onto chitosan via condensation reactions between carboxylic acids and amine groups. Unreacted PHAs and linoleic acid were eliminated via chloroform extraction and for elimination of unreacted chitosan were used 2 wt % of HOAc solution. The pure chitosan graft copolymers were isolated and then characterized by FTIR, 13C‐NMR (in solid state), DSC, and TGA. Microbial polyester percentage grafted onto chitosan backbone was varying from 7 to 52 wt % as a function of molecular weight of PHAs, namely as a function of steric effect. Solubility tests were also performed. Graft copolymers were soluble, partially soluble or insoluble in 2 wt % of HOAc depending on the amount of free primary amine groups on chitosan backbone or degree of grafting percent. Thermal analysis of PHO‐g‐Chitosan graft copolymers indicated that the plastizer effect of PHO by means that they showed melting transitions Tms at 80, 100, and 113°C or a broad Tms between 60.5–124.5°C and 75–125°C while pure chitosan showed a sharp Tm at 123°C. In comparison of the solubility and thermal properties of graft copolymers, linoleic acid derivatives of chitosan were used. Thus, the grafting of poly(3‐hydroxyalkanoate) and linoleic acid onto chitosan decrease the thermal stability of chitosan backbone. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103:81–89, 2007  相似文献   

14.
Graft copolymerization of methyl acrylate (MA) and acrylonitrile (AN) onto acacia cellulose was carried out using free radical initiating process in which ceric ammonium nitrate (CAN) was used as an initiator. The optimum grafting yield was determined by the certain amount of acacia cellulose (AGU), mineral acid (H2SO4), CAN, MA, and AN at 0.062, 0.120, 0.016, 0.397, and 0.550 mol L?1, respectively. The poly(methyl acrylate‐co‐acrylonitrile)‐grafted acacia cellulose was obtained at 55°C after 2‐h stirring, and purified acrylic polymer‐grafted cellulose was characterized by FTIR and TG analysis. Therein, the ester and nitrile functional groups of the grafted copolymers were reacted with hydroxylamine solution for conversion into the hydroxamic acid and amidoxime ligands. The chelating behavior of the prepared ligands toward some metal ions was investigated using batch technique. The metal ions sorption capacities of the ligands were pH dependent, and the sorption capacity toward the metal ions was in the following order: Zn2+ > Fe3+ > Cr3+ > Cu2+ > Ni2+. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
The effect of degree of grafting (GY) and degree of dye uptake on the thermal stability of polyethylene terephthalate (PET) fabric was studied using thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and X‐ray diffraction analysis (XDA). TGA showed that the degradation process was composed of three overlapping stages. The first and second stages were studied in detail. Methacrylic acid (MAA)‐grafted PET fabric was dyed using Rhodamine Red (RR) and Astrazonrot Violet (AV) basic dyes. It was found that grafting deteriorated the thermal stability of both stages. The first stage showed the formation of two new steps at low and high temperatures. Both steps are heating rate and graft yield dependent. The deteriorating effect of grafting was followed by the changes in the kinetic parameters. AV dyeing of grafted samples accelerated the degradation of both stages whereas RR dyeing improved the thermal stability to reach that of ungrafted fabric. XDA showed that the crystalline nature of AV dye stuff is responsible for the rapid degradation in both stages via the introduction of highly incompatible crystalline phase in the polymer back bone, which resulted in the formation of internal stresses that enhanced the degradation process. DSC measurements supported TGA results. The improvement in the thermal stability by RR dyeing is attributed to the amorphous nature and the high thermal stability of the RR dye stuff. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101:1007–1020, 2006  相似文献   

16.
The melt grafting of 10‐undecenoic acid (UA) onto a linear low‐density polyethylene (LLDPE) was studied. The grafting reaction was performed in a thermoplastic mixer and 2,5‐dimethyl‐2,5‐di(tert‐butylperoxy) hexane was used as initiator. The concentration of UA and peroxide ranged from 1 to 4% (w/w) and 0.025 to 0.1% (w/w), respectively. Evidence of the grafting of UA as well as its extent was determined by FTIR. Experimental results showed that the amount of UA grafted increases with both the UA and initiator concentrations. However, the greatest efficiency of grafting was found at the lowest concentration of UA investigated. The grafting efficiency ranged from 8 to 40%. The dynamic linear viscoelastic properties of the original polymer and the grafted materials were evaluated at different frequencies at 160°C using a dynamic rotational rheometer. The modification process affected the melt elasticity and viscosity of the LLDPE. When the original polymer was modified only with peroxide both properties increased with respect to those of the original material. However, when UA was grafted onto LLDPE, the resulting polymers displayed values of elastic moduli and viscosity lower than those of the polymer modified with peroxide. Moreover, when a concentration of 4% of UA was used, the values of those properties were even lower than those corresponding to the original LLDPE. These observations combined with the data obtained from the GPC results suggest that scission reactions may be favored by the presence on UA. In contrast with previous observations, the thermal properties measured by DSC were only slightly altered. The fusion temperature of the modified polymers was slightly lower than that corresponding to the original polymer. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2303–2311, 2004  相似文献   

17.
Novel poly(arylene ether sulfone) (PAES) polymers containing polydimethylsiloxane (PDMS) side chains were synthesized and characterized with NMR and Fourier transform infrared spectroscopy. The thermal properties of the copolymers were evaluated with differential scanning calorimetry and thermogravimetric analysis. The polymers showed perfect thermal stability, as the decomposition temperatures were all above 380°C, and exhibited glass‐transition temperatures in the range 130–188°C. Furthermore, the surface properties of the copolymers were evaluated by X‐ray photoelectron spectroscopy and contact angle analysis. The results show that the hydrophobic abilities of the graft copolymer surfaces were improved significantly compared to PAES through the introduction of the PDMS chains. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

18.
Thermal properties and crystalline structure of liquid crystalline (LC) poly(ethylene terephthalate‐co‐2(3)‐chloro‐1,4‐phenylene terephthalate) [copoly(ET/CPT)] were investigated using differential scanning calorimetry (DSC), thermogravimetry (TGA), limiting oxygen index (LOI) measurement, electron dispersive X‐ray analysis (EDX), X‐ray diffractometry, and infrared spectrometry (IR). The thermal transition temperatures of copoly(ET/CPT) were changed with the composition. Copoly(ET/CPT) showed two thermal decomposition steps and the residues at 700°C and LOI values of copoly(ET/CPT) were almost proportional to its chlorine content. The activation energy of thermal decomposition of LC units was very low compared to that of poly(ethylene terephthalate)(PET) units. Crystal structure of copoly(ET/CPT) (20/80) was of triclinic system with the lattice constants of a = 9.98 A?, b = 8.78 A?, c = 12.93 A?, α = 97.4°, β = 96.1°, and γ = 90.8°, which is very close to that of poly(chloro‐p‐phenylene terephthlate) (PCPT) with the lattice constants of a = 9.51 A?, b = 8.61 A?, c = 12.73 A?, α = 96.8°, β = 95.4°, and γ = 90.8°. When copoly(ET/CPT)(50/50) was annealed at 220°C in vacuum, crystallization induced sequential reordering (CISR) was not observed but the heat of fusion was slightly increased due to the increase of the trans isomer content in PET units. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1286–1294, 2002; DOI 10.1002/app.10451  相似文献   

19.
Grafted films were prepared by the reaction of acrylic acid (AAc) onto poly[(tetrafluoroethylene)‐co‐(perfluorovinyl ether)] copolymer (PFA) using γ‐irradiation by the mutual technique. The grafted copolymer was complexed with the vanadyl group, VO2+, in aqueous solution. The grafted copolymer–metal complexes were examined by infrared and ultraviolet spectrometry, energy‐dispersive spectroscopy (EDS) and X‐ray diffraction (XRD). The amount of vanadium in the grafted films was estimated using EDS. The thermal stability of the films was investigated through thermogravimetric and differential scanning calorimetry measurements. The degree of crystallinity of the grafted and complexed films decreased by treatment with VO2+ ions and also by heating at 300 °C. When heated at a temperature above 300 °C, the grafted chains degraded till they disappeared and the original polymer was almost completely separated. XRD investigation revealed that the metal oxide may be formed as a separate phase with subsequent decrease in the crystallinity of the copolymer. Furthermore, scanning electron microscope (SEM) investigation of the grafted and modified films, both unheated and heated (300 °C), showed changes in the structure and morphology. The tendency of the graft copolymer to adsorb and/or bind to VO2+ from aqueous solution is of promising use in the field of waste treatment of rare metals in the environment. Copyright © 2004 Society of Chemical Industry  相似文献   

20.
Poly(N‐vinylpyrrolidone) (PVP) groups were grafted onto poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) backbone to modify the properties of PHBV and synthesize a new novel biocompatible graft copolymer. The effect of graft modification with PVP on the thermal and mechanical properties of PHBV was investigated. The thermal stability of grafted PHBV was remarkably improved while the melting temperature (Tm) was almost not affected by graft modification. The isothermal crystallization behavior of samples was observed by polarized optical microscopy and the results showed that the spherulitic radial growth rates (G) of grafted PHBV at the same crystallization temperature (Tc) decreased with increasing graft yield (graft%) of samples. Analysis of isothermal crystallization kinetics showed that both the surface free energy (σe) and the work of chain‐folding per molecular fold (q) of grafted PHBV increased with increasing graft%, implying that the chains of grafted PHBV are less flexible than ungrafted PHBV. This conclusion was in agreement with the mechanical testing results. The Young's modulus of grafted PHBV increased while the elongation decreased with increasing graft%. The hydrophilicity of polymer films was also investigated by the water contact angle measurement and the results revealed that the hydrophilicity of grafted PHBV was enhanced. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号