首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ultraviolet (UV)‐curing behavior of an epoxy acrylate resin system comprising an epoxy acrylate oligomer, a reactive diluent, and a photoinitiator was investigated by Fourier transform infrared (FTIR) spectroscopy. The conversion changes of the resin system containing 20 phr of 1,6‐hexanediol diacrylate as a reactive diluent and 2‐hydroxy‐2‐methyl‐1‐phenyl‐propan‐1‐one as a photoinitiator were measured under different UV‐curing conditions. The fractional conversion was calculated from the area of the absorption peak for the vinyl group vibration occurring at 810 cm?1. The effects of photoinitiator concentration, total UV dosage, one‐step or stepwise UV irradiation, UV intensity, atmosphere, and temperature on the curing behavior of the resin system were investigated. The conversion of the resin system increased rapidly at the initial stage of the UV‐curing process but increased very slowly after that. The final conversion of the resin system was mainly affected by total UV dosage. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1180–1185, 2005  相似文献   

2.
For improving the finishing performances of complicated three‐dimensional coated wood products (e.g., furniture) with some shadow zones in the absence of ultraviolet (UV) light, resulting in incomplete curing of UV coatings, the aim of this study was to investigate the characteristics and effects of curing process on the properties of epoxy acrylate UV/PU dual‐cured resin for wood coatings when compared with traditional UV and polyurethane (PU) coatings. The epoxy acrylate oligomer was synthesized for providing a double bond of acryloyl group and a secondary hydroxyl group. The UV/PU dual‐cured coating was formulated with epoxy acrylate resin/tripropylene glycol diacrylate (TPGDA) monomer by the weight ratio of 80/20, 3% dosage of benzil dimethyl ketal as a photoinitiator, and the NCO/OH mole ratio of 1.0. The aromatic polymeric diphenylmethane diisocyanate was used as a hardener. The films of the dual‐cured coating, obtained from UV‐cured or room temperature‐cured process, showed an excellent tensile strength, elongation at break, impact resistance, and lightfastness when compared with traditional UV and PU coatings; especially, the adhesion of UV/PU dual‐cured coating by UV‐cured process was better than that of traditional UV coating. It can therefore be concluded that the epoxy acrylate oligomer‐based dual‐cured coating could readily be used for complicated wood products finishing. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

3.
To facilitate the fabrication of a reliable stacked package for a semiconductor, UV/heat dual curing of adhesives was investigated. The formulated adhesives contained acrylic monomer and epoxy resins. First, UV curing was conducted on the acrylic monomer, followed by heat curing. It was found that UV‐curable acrylic monomers affected the adhesive's properties, e.g., adhesion, water absorption, and viscoelasticity. As the acrylic monomer, neopentylglycol diacrylate (NPGDA), trimethylolpropane triacrylate (TMPTA), dipentaerythritol hexaacrylate (DPHA), and tricyclodecanedimethanol acrylate (TCDDA) were used to investigate the effect of functional group numbers and structure. As a result, an acrylic monomer that has two functional groups with a rigid moiety (TCDDA) showed acceptable properties as adhesives for the fabrication, and thus a UV/heat‐curing adhesive has been successfully developed. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

4.
In this study, the dependence of the mechanical properties of a UV curable acrylated urethane on reactive diluent types and their amounts was investigated. The acrylated urethane prepolymer was synthesized from isophorone diisocyanate (IPDI), an aliphatic diisocyanate, and polypropylene glycol monomethacrylate (PPGMMA) by stepwise addition reaction. UV sensitive mixtures containing N-vinylpyrrolidinone (NVP), thiodiethylene glycol diacrylate (TDGDA) and isobornyl acrylate (IBoA) as reactive diluents were irradiated by UV light. An increase in reactive diluent content, either TDGDA or IBoA, caused an increase in tensile strength and a decrease in elongation values. In contrast, above a certain concentration a decrease in tensil strength was observed when NVP was used as reactive diluent. The water absorption capacities of the UV curable acrylated urethane films were observed to depend on type and amount of reactive diluent that was used. Thermooxidative properties of the films were also improved by incorporation of reactive diluents into formulations.  相似文献   

5.
Antimony doped tin oxide (ATO) nanoparticles were used as nanofillers to improve mechanical properties of UV‐cured polyester–acrylate films. To improve the dispersion of ATO nanoparticles in the polyester–acrylate resin matrix and to strengthen interfacial interactions between ATO nanoparticles and the resin matrix ATO nanoparticles were first organically modified with 3‐methacryloxypropyltrimethoxysilane (MPS). The modification of ATO nanoparticles with MPS was confirmed by FTIR spectroscopy and thermogravimetric analysis (TGA). UV‐curing behaviors of the nanocomposites films were investigated by FTIR spectroscopy. Compared with the film with neat ATO nanoparticles, the film with the same amount of MPS‐modified ATO nanoparticles showed slightly higher UV‐curing rate and final conversion. The mechanical properties of the nanocomposites films were measured by universal testing machine. The MPS‐modified ATO nanoparticles could improve considerably the mechanical properties of the UV‐cured polyester–acrylate nanocomposites films. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

6.
A set of formulations was prepared with polyester acrylate (oligoester M‐9050) oligomers in combination with reactive diluents of different functionalities such as ethylhexyl acrylate, tripropylene glycol diacrylate , and trimethylol propane triacrylate (TMPTA). The thin films were prepared with these formulated solutions under UV radiation on a glass plate, and their physical properties such as pendulum hardness and gel content were studied. The formulation containing TMPTA showed the greatest pendulum hardness and gel content. The polished wood surfaces were cured with these formulated solutions. Physical properties such as pendulum hardness gloss at 20° and 60° angles, adhesion, abrasion resistance, and scratch hardness of UV‐cured surfaces of the wood were characterized. The formulation containing TMPTA had the best physical properties. Two types of filler, sand and talc, were used in the base coat to obtain these better properties. Both fillers improved the properties; however, the 1% sand– and 4% talc–containing formulations performed better. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3826–3834, 2003  相似文献   

7.
紫外光固化环氧丙烯酸酯的研究进展   总被引:1,自引:0,他引:1  
环氧丙烯酸酯树脂是紫外光(UV)固化领域中用量最大的一类光固化树脂,具有粘接强度大、硬度高及耐化学药品性等优点,但也存在黏度较大、韧性较差等问题。为了提高环氧丙烯酸酯的综合性能,有必要对其进行改性。介绍了环氧丙烯酸酯的合成基本原理及主要合成条件对树脂的影响,综述了国内外近期对环氧丙烯酸酯改性的主要方法及研究进展,指出了目前环氧丙烯酸酯在涂料中应用存在的主要问题,为今后对环氧丙烯酸酯性能的进一步改进提供了参考。  相似文献   

8.
In the present study, a polyurethane acrylate (PUA) system cured via a thermal–UV (dual-cure process) was developed. The system selected for this work was a two-pack polyurethane acrylate with polyester polyol as the main component and urethane monoacrylate (UMA) as hardener. The polyester polyol was synthesized in a way to provide a final film coating containing both a suitable flexibility and high surface hardness. The thermal and photochemical curing behavior of the resin was studied via the chemorheology technique and the real-time FTIR. The Boltzmann sigmoidal model was implemented and well-fitted to the data obtained from the chemorheology measurements. The comparison between two reactive diluents, butanediol diacrylate (BDDA) and trimethylolpropane triacrylate (TMPTA) showed that BDDA reacts faster than TMPTA in the thermal curing condition. Nevertheless, the network buildup is stronger when TMPTA is used. The photopolymerization is also faster for the case of TMPTA. However, its final double bond conversion is restricted to a lower amount due to steric hindrance and higher viscosity of the system.  相似文献   

9.
UV‐curing processes are used in industrial applications because of their advantages such as high‐speed applications and solvent‐free formulations at ambient temperature. UV‐curable epoxy acrylate resins containing arylene ether sulfone linkages (EAAES) were synthesized through the condensation of bis(4‐chlorophenyl)sulphone and bisphenol‐A, followed by end‐caping of epichlorohydrin and subsequently acrylic acid. UV‐cured coatings were formulated with epoxy acrylates, reactive diluents such as pentaerythritol tri‐acrylate and pentaerythritol dia‐crylate and photoinitiator. Fourier transfer infrared, 1H NMR, and thermal gravimetrical analysis were employed to investigate the structures and thermal properties of the EAs films. The introduction of EAAES into epoxy acrylate substantially improves its thermal properties and thermo‐oxidative stability at high temperatures. In addition, the acrylate containing arylene ether sulfone linkages can also improve pencil hardness and chemical and solvent resistance of the epoxy acrylate. The obtained UV‐curable epoxy acrylate containing arylene ether sulfone linkages is promising as oligomer for UV‐curable coatings, inks, and adhesives in some high‐tech regions. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41067.  相似文献   

10.
Epoxy methacrylate resin (EMA) UV‐curable coatings exhibit high reactivity, low viscosity and excellent chemical resistance in environmentally friendly coatings. A novel EMA containing phthalazinone moieties for high temperature resistant UV‐curable coatings was synthesized. The formulations were cured with hexanediol diacrylate (HDDA) and trimethylol propane triacrylate (TMPTA) as reactive diluents promoted by a photoinitiator, and then interpenetrating polymer networks were generated. The mechanical, chemical and thermal properties of the clear coatings were characterized using Chinese National Standard methods (GB). EMA was used with UV radiation curing in combination with 6.7 wt% of HDDA and 13.4 wt% of TMPTA, and the properties of the cured films were as follows: pencil hardness of 5 H, 30% NaOH resistance for 30 days, 15% HCl resistance for 10 days, 3% NaCl resistance for 30 days and 5% weight loss temperature of 300.5 °C. EMA UV‐curable coatings containing phthalazinone exhibit excellent chemical and thermal stability, and could be potential candidates for UV‐curable zero volatile organic compound coatings applied in the fields of salt spray corrosion, strong radiation and high‐temperature resistance. Copyright © 2009 Society of Chemical Industry  相似文献   

11.
针对目前光固化(SLA)树脂的市场需求,采用双酚A环氧丙烯酸酯、二丙烯酸酯、三丙烯酸酯及光引发剂进行复配,制备硬质紫外SLA树脂产品,通过电子万能材料试验机、平板流变仪、电子比重计等对组分含量不同的SLA树脂材料的力学性能、黏度、体积收缩率等进行了测试,确定了产品配方,并用该配方SLA树脂进行了SLA 3D打印。结果表明,较合适的SLA树脂的配方为2 mol低聚物双酚A环氧丙烯酸酯、20 mol活性稀释剂及适量光引发剂,采用该配方制得的SLA树脂黏度为240.8 mPa?s,拉伸强度为47.1 MPa,断裂伸长率为5.62 %,体积收缩率为4.44 %,所制备的产品表面光滑、性能优异。  相似文献   

12.
A UV‐curable polyurethane (PU)‐coating system containing phosphorus is formulated by the combination of photoinitiator, PU acrylate oligomer, and UV‐reactive phosphazene monomer. PU acrylate oligomer is prepared by the addition of 2‐hydroxyethylmethacrylate (HEMA) to NCO‐terminated PU prepolymer. UV‐reactive phosphazene monomer is derived from the HEMA substitution reaction to hexachlorocyclotriphosphazene (NPCl2)3. The curing reaction of this PU‐coating system is carried out by UV irradiation. The resultant UV‐cured PU‐coated films demonstrated better performance properties than those of original UV‐cured PU acrylate (UV‐PU) without UV‐reactive phosphazene monomer. Furthermore, their thermal properties are investigated by a thermogravimetric analyzer and a dynamic mechanical thermal analyzer, respectively. The combustion behaviors of these UV‐cured PU‐coated films are evaluated by the measurements of a limiting oxygen index and a cone calorimeter. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1980–1991, 2002  相似文献   

13.
To facilitate the fabrication of a reliable semiconductor package, the UV/heat dual curing of film adhesives was investigated. The curing system of the epoxy resin affected the film adhesive properties. As the UV/heat dual‐curable epoxy resin, a modified o‐cresol novolak epoxy resin, in which half of the glycidyl groups were substituted by acryloyl groups (OCN‐AE), was applied to the film adhesive. The formulated film adhesive contained acrylic copolymer, OCN‐AE, phenolic aralkyl resin as a heat‐curing agent of the glycidyl groups, and 1‐hydroxycyclohexyl phenyl ketone as a photoinitiator of the acryloyl groups. The formulated reference film adhesive contained unmodified o‐cresol novolak epoxy resin (OCN‐E) in place of OCN‐AE. Formulated film adhesives containing a mixture of OCN‐E and o‐cresol novolak epoxy acrylate were also used as references. The morphology and the film adhesive properties were investigated. In these investigations, the film adhesive of OCN‐AE showed better adhesive properties, lower modulus, and a better stress‐relaxation ability than the referenced adhesives. As a result, a reliable film adhesive for semiconductor packages was successfully developed. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

14.
UV‐curable, transparent hybrid material of urethane‐acrylate resin was prepared by the sol‐gel process using 3‐(trimethoxysilyl)propylmethacrylate (TMSPM) as a coupling agent between the organic and inorganic phases. The effects of the content of acid and silica on the morphology and mechanical properties of UV‐curable polyurethane‐acrylate/silica hybrid (UA‐TMSPM)/SiO2 materials have been studied. The results of thermogravimetric analysis for the (UA‐TMSPM)/SiO2 hybrid materials indicated that the thermal stability of the hybrids is greatly improved. It was found that with the increase of HCl content, the interfacial interaction between organic and inorganic phases had been strengthened, as demonstrated by field emission scanning electron microscopy. Without sacrificing flexibility, the hybrid materials showed improved hardness with increasing content of acid and silica. Compared with the pure organic counterpart UA/hexanediol diacrylate (UA/HDDA) system, abrasion resistance of the hybrids improved with increasing acid content, at low silica content. Copyright © 2004 Society of Chemical Industry  相似文献   

15.
邹建军  鲁婷  王家喜 《化工进展》2019,38(4):1947-1952
利用碳酸亚乙酯与1,6-己二胺、异佛尔酮二胺反应,制备出两种含氨基甲酸酯基的二元醇,基于氨基甲酸酯二元醇与1,6-己二醇二丙烯酸酯(HDDA)、新戊二醇二丙烯酸酯(NPGDA)及三羟甲基丙烷三丙烯酸酯(TMPTA)本体条件下的Oxa-Michael加成反应及酯交换反应,合成出6种含氨基甲酸酯基的丙烯酸酯混合物。利用FTIR及高分辨质谱分析了产物结构,用FTIR考察了所合成氨基甲酸酯基丙烯酸酯光固化过程的动力学,测定了光固化膜的性能。结果表明,在含占总质量分数3% 的2-羟基-2-甲基-1-苯基-1-丙酮(1173)光引发剂的引发下,氨基甲酸酯基丙烯酸酯能在30s内固化形成表面平整、柔韧性(0.5~2.5mm)良好、透明或半透明的膜;固化膜的凝胶率及铅笔硬度分别为92%~96%、4~5H,对玻璃的附着力为0~1级。  相似文献   

16.
With an aim to reducing manufacturing costs, in general and specifically to provide a solution to the thick laminate curing depth issue for composite materials, UV curing technology was combined with a fiber placement process to fabricate acrylate/glass‐fiber composites. A novel layer‐by‐layer UV in situ curing method was employed in this article and interlaminar shear strength (ILSS) tests and SEM were used to evaluate the effect of processing parameters, including compaction force and UV exposure dose, on ILSS. The SEM images from short‐beam strength test samples and the results of ILSS showed that the fibers' distribution was uniform in the cured matrix resin resulting from the compaction forces and that beneficially influenced the ILSS of the composite greatly. However, the matrix resin produced large shrinkage stresses when it reached a high degree of conversion (DC) in one‐step, which resulted in poor interlaminar adhesion. In addition, the fast curing speed of UV on the composite resulted in poor wetting between fiber and resin, and accordingly resulted in lower ILSS. To overcome these problems and obtain high ILSS value composites, an optimized compaction force and UV exposure dose were determined experimentally. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

17.
Heat and ultraviolet (UV)‐induced bonding and debonding (BDB) adhesives were designed and prepared through blending an epoxy resin, diglycidyl ether of bisphenol A (DGEBA) with an epoxy acrylate resin, bisphenol‐A epoxy acrylate resin (BEA). The variation of the chemical structure of DGEBA and BEA in the sequential heat‐ and UV‐curing processes was characterized by Fourier transform infrared spectroscopy (FTIR). The FTIR results indicate that DGEBA and BEA successfully took part in both the heat‐curing and UV‐curing processes. The effects of the mass ratio of BEA to DGEBA, amount of heat‐curing agent, type of diluents, and UV irradiation time on the BDB properties of BDB adhesive were systematically investigated. The results show that the bonding strength increases with the decrease of the mass ratio of BEA to DGEBA and with the increase of the amount of heat‐curing agent in a certain range. The debonding strength decreases with the increase of the mass ratio of BEA to DGEBA. The mass ratio of BEA to DGEBA was set at 10 to ensure the ratio of the bonding strength to debonding strength greater than 10 times. The debonding strength of BDB adhesives also depends on the UV irradiation time, decreasing with the increase of UV irradiation time in a certain range. Based on the FTIR results and the dependence of the bonding and deboning strengths on the reaction conditions, a possible BDB mechanism of BDB adhesive was proposed. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46435.  相似文献   

18.
Oxygen plasma was used to modify the surface properties of carbon fibers and their adhesion strength with an acrylate resin cured by electron beam. A characterization of the surface topography and the surface chemistry was carried out (topography at a micrometric and nanometric scale, specific surface area, temperature programmed desorption, and X-ray photoelectron spectroscopy). The topography remained unchanged. Regarding the surface chemistry, carboxylic acids, alcohols, lactones, and ethers were created and their location was at the outer surface of the fibers. A pull-out test was used to measure the adhesion strength with the acrylate resin cured by electron beam. For comparison, an isothermal UV curing was also investigated. The value of the interfacial shear strength was increased only in the case of UV curing. No improvement was observed with electron beam curing, which highlighted the generation of an interphase, the mechanical properties of which are dependent on the processing conditions.  相似文献   

19.
The multifunctional thiol‐ and acrylate‐terminated polyurethane (PU) has been successfully prepared for using as the main resin in the UV curable coatings. The structure and molecule weight of prepared PUs were analyzed by fourier transformed infrared spectroscopy (FTIR) and gel permeation chromatography, respectively. The results showed that the different terminal multifunctional groups have been grafted onto the PU and their difference in molecule weight was significant. Used as the main resin in coatings, the curing kinetic and percentage conversion of the different UV curing coatings system were investigated by real‐time FTIR method, and the effects of terminal functional groups and photoinitiator on the final conversion percentage and conversion rate were also compared. It is observed that the thiol‐terminated PU had higher conversion speed and final conversion percentage due to the remarkable effect of mercapto groups on reducing oxygen inhibition during UV curing process. The shrinkage, viscosity, and adhesion of UV curable coatings with thiol‐ and acrylate‐terminated PUs were also investigated and compared, and the results indicated that the former exhibited lower shrinkage and higher adhesion performances than the latter, along with the lower viscosity. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40740.  相似文献   

20.
UV curable glycidyl carbamate based resins   总被引:1,自引:0,他引:1  
The synthesis and characterization of UV curable resins based on glycidyl carbamate chemistry have been explored. Glycidyl carbamate (GC) functional resins have been used to obtain crosslinked coatings with a wide range of properties using several crosslinking techniques such as epoxy-amine, self-crosslinking, and sol-gel. GC resin technology was further expanded to UV curable coatings by reacting polyfunctional GC resins with acrylic acid to yield acrylated glycidyl carbamate (AGC) resins. Alcohol-modified UV curable GC resins were also prepared to obtain lower viscosity. Commonly used reactive diluents were used to prepare a UV curable GC coating formulations. The coatings were cured in air using a Fusion LC6B Benchtop Conveyer with an F300 UV lamp. The degree of conversion of acrylic double bonds during UV curing was determined using real time FTIR and showed that the resins had fast cure rates and high extents of conversion of acrylate groups. Coating properties such as hardness, impact strength, methyl ethyl ketone double rubs, flexibility, and adhesion were studied. Dynamic mechanical analysis was used to determine crosslink density of the coatings. Differential scanning calorimetry and thermogravimetric analysis were used to study the thermal properties of the coatings. The type of polyisocyanates and the extent of modification in GC resins influenced the degree of conversion, crosslink density, and coating performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号