首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
S. Mall  V. K. Jain  H. A. Fadag 《Strain》2011,47(Z1):e305-e318
Abstract: The effects of shot‐peening on fretting fatigue crack growth behaviour in titanium alloy, Ti‐6A1‐4V were investigated. Three shot‐peening intensities: 4A, 7A and 10A were considered. The analysis involved the fracture mechanics and finite element sub‐modelling technique to estimate crack propagation lives. These computations were supplemented with the experimentally measured total fretting fatigue lives of laboratory specimens to assess the crack initiation lives. Shot‐peening has significant effect on the initiation/propagation phases of fretting fatigue cracks; however this effect depends upon the shot‐peening intensity. The ratio of crack initiation and total life increased while the ratio of the crack propagation and total life decreased with an increase of shot‐peening intensity. Effects of residual compressive stress from shot‐peening on the crack growth behaviour were also investigated. The fretting fatigue crack propagation component of the total life with relaxation increased in comparison to its counterpart without relaxation in each shot‐peened intensity case while the initiation component decreased. Improvement in the fretting fatigue life from the shot‐peening and also with an increase in the shot‐peening intensity appears to be not always due to increase in the crack initiation resistance from shot‐peened induced residual compressive stress.  相似文献   

2.
There is a need for methodology(ies) to analyze the crack growth behavior under fretting fatigue condition since its experimental determination is a challenging task. A finite element sub-modeling method was used to estimate the crack propagation life in titanium alloy, Ti-6Al-4V specimens. Two contact geometries, cylinder-on-flat and flat-on-flat, were analyzed. The computed crack propagation lives were combined with the results of an experimental study where total fatigue lives were measured. The combined numerical-experimental approach provided the crack initiation lives. The crack propagation life increased with increasing applied cyclic bulk stress in similar manner for both contact geometries. Almost 90% of the fretting fatigue life was spent during the crack nucleation and initiation phases in the high cycle fatigue regime. A parametric study was also conducted to investigate the effects of contact load, coefficient of friction and tangential force on the crack growth behavior. The crack propagation life decreased with increase of these three parameters. This decrease was similar for the contact load and the tangential force in both contact geometries, however, the decrease in the case of coefficient of friction was relatively more in the cylindrical pad than in the flat pad.  相似文献   

3.
Effect of mean stress on fretting fatigue of Ti-6Al-4V on Ti-6Al-4V   总被引:1,自引:0,他引:1  
Fretting fatigue tests of Ti‐6Al‐4V on Ti‐6Al‐4V have been conducted to determine the influence of stress amplitude and mean stress on life. The stress ratio was varied from R=−1 to 0.8. Both flat and cylindrical contacts were studied using a bridge‐type fretting fatigue test apparatus operating either in the partial slip or mixed fretting regimes. The fretting fatigue lives were correlated to a Walker equivalent stress relation. The influence of mean stress on fretting fatigue crack initiation, characterized by the value of the Walker exponent, is smaller compared with plain fatigue. The fretting fatigue knockdown factor based on the Walker equivalent stress is 4. Formation of fretting cracks is primarily associated with the tangential force amplitude at the contact interface. A simple fretting fatigue crack initiation metric that is based on the strength of the singular stress field at the edge of contact is evaluated. The metric has the advantage in that it is neither dependent on the coefficient of friction nor the location of the stick/slip boundary, both of which are often difficult to define with certainty a priori.  相似文献   

4.
A shear stress-based parameter for fretting fatigue crack initiation   总被引:1,自引:0,他引:1  
The purpose of this study was to investigate the fretting fatigue crack initiation behaviour of titanium alloy, Ti–6Al–4V. Fretting contact conditions were varied by using different geometries of the fretting pad. Applied forces were also varied to obtain fretting fatigue crack initiation lives in both the low- and high-cycle fatigue regimes. Fretting fatigue specimens were examined to determine the crack location and the crack angle orientation along the contact surface. Salient features of fretting fatigue experiments were modelled and analysed with finite element analysis. Computed results of the finite element analyses were used to formulate a shear stress-based parameter to predict the fretting fatigue crack initiation life, location and orientation. Comparison of the analytical and experimental results showed that fretting fatigue crack initiation was governed by the maximum shear stress, and therefore a parameter involving the maximum shear stress range on the critical plane with the correction factor for the local mean stress or stress ratio effect was found to be effective in characterizing the fretting fatigue crack initiation behaviour in titanium alloy, Ti–6Al–4V.  相似文献   

5.
This paper analyses different methods used to estimate fatigue life adding initiation with propagation in fretting fatigue tests with spherical contact. In particular, the discussion will be centred on the initiation phase. Some of the methods presented define a crack length in advance, after which crack propagation is considered and calculated. Stresses close to the surface are then used to estimate initiation. The initiation life is estimated by using either the stresses averaged up to a certain depth or the stresses at a certain depth. Yet another method combines initiation with propagation, although in this case the initiation length is not a fixed quantity, it is obtained as a result of analysing each specific case. These methods are applied to a series of fretting fatigue tests with spherical contact, performed with 7075-T6 aluminium alloy and the results are discussed.  相似文献   

6.
The effects of shot‐peening intensity on fretting fatigue crack‐initiation behaviour of titanium alloy, Ti–6Al–4V, were investigated. Three intensities, 4A, 7A and 10A with 100% surface coverage, were employed. The contact geometry involved a cylinder‐on‐flat configuration. Residual stress and improvement in fretting fatigue life were directly related to shot‐peening intensity. The magnitude of compensatory tensile stress and its location away from the contact surface increased with increasing intensity. The relaxation of residual stress occurred during fretting fatigue which increased with increasing the number of cycles. An analysis using a critical plane‐based fatigue crack‐initiation model showed that stress relaxation during the fretting fatigue affects life and location of crack initiation. Greater relaxation of the residual stress caused greater reduction of fatigue life and shifted the location of crack initiation from inside towards the contact surface. Modified shear stress range (MSSR) parameter was able to predict fretting fatigue crack‐initiation location, which agreed with the experimental counterparts. Also, the computed parameter showed an appropriate trend with the experimental observations of the measured fretting fatigue life based on the shot‐peening intensity.  相似文献   

7.
In fretting fatigue, the combination of small oscillatory motion, normal pressure and cyclic axial loading develops a noticeable stress concentration at the contact zone leading to accumulation of damage in fretted region, which produces micro cracks, and consequently forms a leading crack that can lead to failure. In fretting fatigue experiments, it is very difficult to detect the crack initiation phase. Damages and cracks are always hidden between the counterpart surfaces. Therefore, numerical modeling techniques for analyzing fretting fatigue crack initiation provide a precious tool to study this phenomenon. This article gives an insight in fretting fatigue crack initiation. This is done by means of an experimental set up and numerical models developed with the Finite Element Analysis (FEA) software package ABAQUS. Using Continuum Damage Mechanics (CDM) approach in conjunction with FEA, an uncoupled damage evolution law is used to model fretting fatigue crack initiation lifetime of Double Bolted Lap Joint (DBLJ). The predicted fatigue lifetimes are in good agreement with the experimentally measured ones. This comparison provides insight to the contribution of damage initiation and crack propagation in the total fatigue lifetime of DBLJ test specimens.  相似文献   

8.
Fretting fatigue behaviour of shot‐peened titanium alloy, Ti‐6Al‐4V was investigated at room and elevated temperatures. Constant amplitude fretting fatigue tests were conducted over a wide range of maximum stresses, σmax= 333 to 666 MPa with a stress ratio of R= 0.1 . Two infrared heaters, placed at the front and back of specimen, were used to heat and maintain temperature of the gage section of specimen at 260 °C. Residual stress measurements by X‐ray diffraction method before and after fretting test showed that residual compressive stress was relaxed during fretting fatigue. Elevated temperature induced more residual stress relaxation, which, in turn, decreased fretting fatigue life significantly at 260 °C. Finite element analysis (FEA) showed that the longitudinal tensile stress, σxx varied with the depth inside the specimen from contact surface during fretting fatigue and the largest σxx could exist away from the contact surface in a certain situation. A critical plane based fatigue crack initiation model, modified shear stress range parameter (MSSR), was computed from FEA results to characterize fretting fatigue crack initiation behaviour. It showed that stress relaxation during test affected fretting fatigue life and location of crack initiation significantly. MSSR parameter also predicted crack initiation location, which matched with experimental observations and the number of cycles for crack initiation, which showed the appropriate trend with the experimental observations at both temperatures.  相似文献   

9.
C. Navarro  S. Muñoz  J. Domínguez 《Strain》2011,47(Z1):e283-e291
Abstract: Two different phases are usually distinguished in the crack growth process: initiation and propagation. Within the models used in determining fatigue life, there are many that combine both phases, determining total life as the sum of the number of cycles spent in initiation, Ni, and propagation, Np. In order to apply these models, it is necessary to define the crack length at which it is considered that initiation finishes and propagation begins: initiation length, ai. This length is usually defined a priori based on the size of the smallest detectable crack, on the definition of failure in the S‐N curve, or by choosing the value that better fits the experimental results. The object of this paper is to analyse the influence of this initiation length over the estimated fatigue life in fretting fatigue. The model used calculates the initiation phase from an S‐N curve where the propagation cycles from the defined initiation length have been subtracted. This model is applied to a group of fretting fatigue tests with spherical contact.  相似文献   

10.
A study was conducted to characterize fretting fatigue in self‐piercing riveted single‐lap joints of aluminium alloy 5754 sheets. The experimental results showed that fretting occurred at three different positions in the joint. It was established that fretting led to surface work‐hardening and crack initiation as well as early stage crack propagation. Crack initiated at the surface of the riveted sheets as a result of high stress concentration and propagated oblique to the mating surface under the effect of fretting fatigue. The depth of damage due to fretting depended on the applied load and the cycle time. Microhardness measurements allowed the estimation of the depth of damage due to fretting. These results were observed to correlate well with the length of crack propagation.  相似文献   

11.
Fretting fatigue crack initiation in titanium alloy, Ti?6Al?4V, was investigated experimentally and analytically by using finite element analysis (FEA). Various types of fretting pads were used in order to determine the effects of contact geometries. Crack initiation location and crack angle orientation along the contact surface were determined by using microscopy. Finite element analysis was used in order to obtain stress state for the experimental conditions used during fretting fatigue tests. These were then used in order to investigate several critical plane based multiaxial fatigue parameters. These parameters were evaluated based on their ability to predict crack initiation location, crack orientation angle along the contact surface and the number of cycles to fretting fatigue crack initiation independent of geometry of fretting pad. These predictions were compared with their experimental counterparts in order to characterize the role of normal and shear stresses on fretting fatigue crack initiation. From these comparisons, fretting fatigue crack initiation mechanism in the tested titanium alloy appears to be governed by shear stress on the critical plane. However, normal stress on the critical plane also seems to play a role in fretting fatigue life. At present, the individual contributions/importance of shear and normal stresses in the crack initiation appears to be unclear; however, it is clear that any critical plane describing fretting fatigue crack initiation behaviour independent of geometry needs to include components of both shear and normal stresses.  相似文献   

12.
ABSTRACT According to experimental evidence, the early stages of fatigue crack propagation under fretting conditions are strongly influenced by the stress gradient generated in the material near the contact zone. This suggests that the crack growth process can be analysed using methodologies similar to those employed to predict the fatigue behaviour of notched elements. This paper assesses the applicability of a number of models originally developed for notched components to fretting fatigue problems. The ability of such models to predict fatigue failure is discussed and compared with experimental results for Al 7075‐T6 specimens that were subjected to fretting fatigue under spherical contact.  相似文献   

13.
Abstract— Fretting induced cracking is commonly observed in industrial components that are in contact and are subjected to small oscillatory movements between them. Fretting causes a considerable reduction in fatigue strength. In this paper recent knowledge on the short and long crack growth behaviour is applied to estimate crack propagation and fatigue life in fretting. The model is based on mode I stress intensity factors with a threshold modified for short cracks. The predicted results are compared with experiments and the influence of the contact pressure is examined. A good correlation between predictions and experimental results are obtained for crack growth rates as well as fatigue lives in terms of number of cycles to failure. It is seen that the increase of fatigue life observed for contact pressures above a certain level can be predicted by the crack growth model.  相似文献   

14.
The fretting fatigue crack formation and propagation behaviors of Ni‐based single‐crystal (NBSX) superalloys are investigated in this paper. Subsurface crack formation process is revealed by in situ fretting fatigue experiment. The crack is observed to form on subsurface area, then propagates to the contact surface. Inclusions in materials are found to have obvious effects on crack propagation, and slip lines are closely related to the crack propagation direction. Crystal plastic finite element method (CPFEM) simulation is used to simulate crack formation position. The accumulative plastic strain peaks at the edge of contact zone and the subsurface area. The results show that the CPFEM simulation and in situ observation achieve good agreements.  相似文献   

15.
A study was conducted to verify the efficacy of a fracture mechanics methodology to model the crack growth behavior of fretting fatigue-nucleated cracks obtained under test conditions similar to those found in turbine engine blade attachments. Experiments were performed to produce cracked samples, and fretting fatigue crack propagation lives were calculated for each sample. Cracks were generated at 106 cycles (10%-of-life) under applied stress conditions previously identified as the fretting fatigue limit conditions for a 107 cycle fatigue life. Resulting cracks, ranging in size from 30 to 1200 μm, were identified and measured using scanning electron microscopy. Uniaxial fatigue limit stresses were determined experimentally for the fretting fatigue-cracked samples, using a step loading technique, for R=0.5 at 300 Hz. Fracture surfaces were inspected to characterize the fretting fatigue crack front indicated by heat tinting. The shape and size of the crack front were then used in calculating ΔKth values for each crack. The resulting uniaxial fatigue limit and ΔKth values compared favorably with the baseline fatigue strength (660 MPa) for this material and the ΔKth value (2.9 MPa√m) for naturally initiated cracks tested at R=0.5 on a Kitagawa diagram.Crack propagation lives were calculated using stress results of FEM analysis of the contact conditions and a weight function method for determination of ΔK. Resulting lives were compared with the nine million-cycle propagation life that would have been expected in the experiments, if the contact conditions had not been removed. Scatter in the experimental results for fatigue limit stresses and fatigue lives had to be considered as part of an explanation why the fatigue life calculations were unable to match the experiments that were modeled. Analytical life prediction results for the case where propagation life is observed to be very short experimentally were most accurate when using a coefficient of friction, μ=1.0, rather than for the calculations using μ=0.3  相似文献   

16.
Fracture mechanics based fretting fatigue life predictions in Ti-6Al-4V   总被引:3,自引:0,他引:3  
A fracture mechanics based crack propagation analysis is developed to work directly with the output of a contact mechanics stress analysis for fretting fatigue. A series of remote load fatigue tests were conducted on specimens that had previously been subjected to fretting fatigue loading conditions. The growth of these prior fretting induced cracks were monitored and compared to results from the crack propagation analysis. A combined fatigue crack formation and propagation analysis was then applied to other fretting fatigue experiments with good success. The creation of fretting fatigue stress-life curves is also demonstrated.  相似文献   

17.
In literature the most common approach to investigate fretting fatigue is based on contact mechanics. Crack initiation parameters of fretting fatigue are developed using elastic solution of two contacting bodies. Even though contact based parameters has been used extensively, they could not fully capture crack initiation mechanism due to the complexities of the fretting fatigue damage process, which depends on pad geometries, surface properties, material properties, and mechanical loading conditions. This has instigated fretting fatigue researcher to investigate other approaches. Recently, taking advantage of the similarities between contact mechanics and fracture mechanics lead to the development of crack analogy methodology (CAM), which defines the stress intensity factor as a fretting fatigue crack initiation parameter. CAM has shown a great potential investigating fretting fatigue. However, it has not been applied to wide range of fretting fatigue scenarios. The scope of this paper is not to focus on analytical development of CAM as much as validating its ability to analyze various fretting fatigue scenarios. Based on CAM, the present study introduces the crack analogy fretting parameter (CAF-parameter) to investigate crack initiation of fretting fatigue, which is equivalent to the change of mode II stress intensity factor at the contact surface, since the change in the stress intensity factor reflects the cyclic mechanism of fatigue. Further, a modification to the CAM is adopted to include various indenter-substrate geometries. Also, CAF-parameter-life curve, similar to the stress-life S-N curve, will be developed as a prediction tool to crack initiation for various geometric configurations using experimental data. This is consistent with presenting fatigue data. The results show similar pattern to plain fatigue with lower damage tolerance. It also shows scatter and dependency on the pad configuration as expected. Finally, the CAF-parameter shows potentials in effectively analyzing/predicting the complex mechanism of fretting fatigue.  相似文献   

18.
This paper presents the results of fretting fatigue tests carried out on Ti6Al4V sheet specimens in contact with carbide rod in a cylinder-on-flat contact configuration. A new methodology of carrying out fretting fatigue experiments is proposed and successfully implemented using a pin-in-dovetail and pin-in-hole configuration. The advantage of this configuration is the simplicity and ease of application. The tests are carried out on MTS 810 at different loads, constant frequency (30 Hz) and ambient conditions. These tests reveal that the crack initiation and propagation are dependent on the applied load and the configuration of the contact. At low loads, non-propagating cracks are observed in the pin-in-dovetail configuration using metallurgical microscope. At high loads these cracks become longer but are still non-propagating. Numerical simulation using elastic–plastic material model is carried out to determine stress intensity factor and the mode of crack propagation. Maximum principal stress damage criteria approach is used to predict the crack initiation sites under different loads and a strong correlation with experimental results is observed. The crack propagation is simulated using XFEM, which successfully simulates the non-propagating crack length.  相似文献   

19.
The present study investigated the fretting fatigue crack initiation of dovetail structure based on experimental observation and multiple axial criteria. Two typical critical plane approaches of the Smith‐Watson‐Topper (SWT) and the Fatemi and Socie (FS) model were used to predict the crack initiation location, orientation angle, and fatigue life. The results indicate that both SWT and FS models predict consistent results with the experiment in crack initiation location. Regarding the crack initiation angle, FS model shows good agreement with the experimental observation, but SWT model exhibits a large difference. The two models give conservative results in fretting fatigue life. In view of this, the theory of critical distance (TCD) was incorporated into the SWT and the FS models. It shows that both the TCD‐SWT and the TCD‐FS predict fatigue lives within a scatter band of 2. It suggests that introducing the TCD into the critical plane model can greatly reduce the conservatism of the prediction. Furthermore, the prediction has less dependence on specific models.  相似文献   

20.
Fretting fatigue often occurs in contact couples subjected to both bulk oscillatory loads and normal loads, which accelerates the initiation and propagation of fatigue cracks. This study explores the multiaxial fretting fatigue behaviour of 35CrMoA steel with different contact stresses under diamond and square loading paths by experimental methods. From experimental results, the fracture mechanisms with the increase of contact stress have been summarized by combining the analysis of macrorupture and microrupture surface. The strain response behaviour, characteristics of fretting region and crack propagation direction are also analysed and concluded considering the influence of loading path and contact stress in this paper, which have been rarely mentioned in the previous literature. In addition, debris composition of stick and slip regions is investigated as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号