首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Our measurements on fatigue cracks grown in PVC under plane-strain conditions shows that the width of the observed arrest lines is in agreement with the theoretical results obtained from the Dugdale-Muskhelishvili model.Further, we have shown that the fatigue of one arrest line before rupture requires a large number of loading cycles this number of cycles is constant for every arrest line of a given specimen.Brittle fracture of the specimen occurs when the stress-intensity factor K first introduced by Irwin reaches a given value.  相似文献   

2.
The effect of impact modification on slow crack growth in a poly(vinyl chloride) (PVC) compound was examined in order to test a methodology for predicting long-term creep fracture from short-term tension-tension fatigue tests. In all cases the crack propagated in a stepwise manner through a crack tip craze zone. Step length was analyzed in terms of the Dugdale model for a crack tip plastic zone. The overall crack growth rate in fatigue and creep followed the conventional Paris power law with the same power 2.7, da/dt = A f K I 2.7 and da/dt = BK I 2.7,respectively. The effects of frequency, temperature, and R-ratio (the ratio of the minimum to maximum stress intensity factor in the fatigue loading cycle) on the Paris prefactor were determined. Crack growth rate was modeled as the product of a creep contribution that depended only on the maximum stress intensity factor and a fatigue contribution that depended on strain rate da/dt = B f K I,max 2.7 (1 + C , where C is a coefficient defining the strain rate sensitivity. A linear correlation allowed for extrapolation of the creep prefactor B f from fatigue data. Impact modification decreased B f but had no effect on C.  相似文献   

3.
The effects of processing of unplasticized polyvinyl chloride (uPVC) pipes on fatigue-crack growth in terms of mean stress, frequency and fatigue-crack initiation, as well as on creep rupture, were investigated. No significant processing effect was observed on fatigue crack growth rates and fatigue crack initiation. However, creep rupture with three-point bending tests was significantly affected by the processing level. Two orders of magnitude difference in time to failure were found between well and poorly processed pipes caused by the large difference in the stress intensity factor at fracture instability between these pipes.  相似文献   

4.
The kinetics and mechanism of slow crack growth in fatigue and creep of high density polyethylene were studied. The relationship between fatigue and creep was examined by varying the R-ratio (the minimum/maximum loads in the fatigue loading cycle) in the tensile mode such that loading ranged from mainly dynamic (R = 0.1) to static (R = 1.0, creep test). The stepwise crack propagation mechanism characteristic of long-term failures in polyethylene was observed for all loading conditions studied. Fatigue fracture kinetics allowed for extrapolation to the case of creep failure, which suggested that short-term fatigue testing can be used to predict long-term creep fracture properties. The size of the craze damage zone ahead of the arrested crack tip was controlled only by the mean stress, however the lifetime of the zone was determined by both the maximum stress and the mean stress. Crack growth rate was related to the maximum stress and the mean stress by a power law relationship, which described crack growth over the entire range of loading conditions studied.  相似文献   

5.
The relationship between slow crack propagation in creep and fatigue in a medium density polyethylene pipe material was studied by increasing the R-ratio (defined as the ratio of minimum to maximum stress in the fatigue loading cycle) from 0.1 to 1.0 (creep). The study included characterization of the effects of R-ratio and temperature (21 to 80°C) on the mechanism and kinetics of slow crack propagation. With increasing R-ratio and decreasing temperature, the fracture mode changed from stepwise crack propagation, i.e. crack growth by the sequential formation and breakdown of a craze zone, to a quasi-continuous mode of crack growth through the preexisting craze. Despite the change in fracture mode, the damage zone, as characterized by the length of the main craze, shear crazes, and crack tip opening displacement, followed the same dependence on loading parameters, and crack growth rate followed the same kinetics. Crack growth rate (da/dt) was related to the maximum stress intensity factor KI, max and R-ratio by a power law relationship (da/dt) = BK4 I, max(1 + R)–6. Alternatively, crack growth rate was expressed as (da/dt) = BK I 4 (t)T() with a creep contribution B‹K I 4 (t)›T, calculated by averaging the known dependence of creep crack growth rate on stress intensity factor KI over the period T of the sinusoidal loading curve, and a fatigue acceleration factor () that depended on strain rate only. The correlation in crack growth kinetics allowed for extrapolation to creep fracture from short-term fatigue testing. The temperature dependence of crack growth rate was contained in the prefactors B and B. A change in slope of the Arrhenius plot of B at 55°C indicated that at least two mechanisms contributed to crack propagation, each dominating in a different temperature region. This implied that a simple extrapolation to ambient temperature creep fracture from elevated temperature tests might not be reliable.  相似文献   

6.
The strain fields around diamond-shaped cavities in cold-drawn rigid PVC have been determined by the application of fine grids to the specimen surface. An element of material adjacent to the diamond tip deforms predominantly in simple shear with a direction of strain parallel to the draw direction. Each element attains a maximum shear strain before the next element begins to shear. This process, possibly analogous to neck propagation in tensile tests, produces the characteristic diamond shape. Simple extension and simple shear tests on cold-drawn PVC confirm that under the stress system around a cavity, simple shear in the draw direction is a favourable mode of deformation.  相似文献   

7.
8.
接枝共聚改性型医用聚氯乙烯   总被引:1,自引:0,他引:1  
本文对增塑剂渗出性小或亲水性、生物相容性优异的接技共聚改性医用聚氯乙烯的研究进展进行了综述  相似文献   

9.
Chemical modification of poly(vinyl chloride) (PVC) by dehydrochlorination with ethanolic KOH is found to yield modified PVC with conjugated polyene sequence. The semiconducting nature of ethoxide-modified PVC is illustrated with temperature dependence of conductivity (σ). The relative ratios (r) of conductivity,σ modifiedpvc /σ unmodifiedpvc , are greater than unity in the temperature range 50° to 180°C,r being maximum in the vicinity of glass-transition temperature (T g).T g inferred from conductivity-temperature profiles is found to be greater for modified PVC relative to unmodified PVC, which is explicable in terms of restricted free rotation limiting segmental motion. For comparison with the conductivity andT g of ethoxide-modified PVC, LiCl-modified PVC and (aniline + S2O 8 2− )-modified PVC have also been studied.  相似文献   

10.
Creep crack growth tests on a 1CrMoV steel are presented, covering the aspects of specimen size, geometry and service-like stresses. To consider nonstationary loading in modern plants creep fatigue crack growth tests have been started. As test materials a 1CrMoV steel and a modern 9%Cr-steel were used. By means of a comparison of creep crack and creep fatigue crack results the effectiveness of the fracture mechanics parameters K1, ΔK1, and C* could be evaluated.  相似文献   

11.
Creep‐fatigue crack growth (C‐FCG) rates in a P91 steel at 625°C were correlated as the average time rate of crack growth during hold time, (da/dt)avg , with (Ct)avg. At 60‐second hold time, the rates were lower than for 600‐second hold time. At 600‐second hold time, the crack growth rates converged on to the creep crack growth rate (CCGR) trend. Thus, the CCGR trend represents the upper bound for time‐dependent crack growth rates in P91 materials. The analytical expressions based on considering just the elastic and secondary creep deformation rates overestimated the magnitudes of (Ct)avg by as much as a factor of 10 for the 600‐second hold time tests. After accounting for the effects of cyclic plasticity during unloading, and accounting for only partial reversal of creep strains accumulated during hold time, the estimates of (Ct)avg compared well with the measured values. CR represents the extent of crack tip creep strain reversal, and tpl is the time required for the crack tip creep zone during the hold time to become equivalent in size to the cyclic plastic zone in terms of stress carried by that region. Together, these parameters accurately account for the effects of crack tip cyclic plasticity on the magnitude of (Ct)avg. Both tpl and CR depend on material properties, and the latter also depends on the hold time. A parameter ? is introduced that is dependent only on material properties and from which CR can be estimated for a given hold time. tpl and ? can be reported as part of the test results from C‐FCG testing.  相似文献   

12.
Isothermal crystallisation of blends of Poly(ethylene oxide) and Poly(vinyl chloride), PEO/PVC, was analysed by differential scanning calorimetry (DSC). The influence of the amorphous polymer, PVC, on crystallisation rate of PEO was investigated using pure PEO as reference. Pure PEO and PEO/PVC blends were submitted to different crystallisation temperatures (from 40 to 58°C) and crystallisation times (from 1 to 72 h). Using the Hoffman-Weeks plot procedure, the equilibrium melting temperature, T m°, was determined for pure PEO and for PEO/PVC blends with compositions (in wt%): 90/10, 80/20, 70/30, 60/40, 50/50, 40/60, 30/70 and 20/80. The lamellar thickness factor of PEO crystals for pure PEO and for the blends showed a strong decrease when the PVC content was higher than 60 wt%. A small depression in T m° was verified as the composition of PVC was increased. From the depression in T m° the polymer-polymer interaction parameter, 12, was evaluated using the Nishi-Wang equation. The results indicate that the miscibility between PEO and PVC in the molten state depends on the blend composition. The crystallisation rate also depends on the blend composition: the richer in PVC is the blend, the slower the crystallisation process.  相似文献   

13.
The relatively high dielectric constant poly(vinyl chloride) (PVC) was blended with poly(ethylene oxide) (PEO) polymer electrolytes to improve their electrical conductivity from the optical spectra of the given polymeric system. The optical properties in the UV–visible region of PVC polymer containing 0%, 20%, 50% and 70% by weight PEO are reported. The optical results obtained were analyzed in terms of the absorption formula for non-crystalline materials. The absorption coefficient and the optical band energy gap (Eopt) have been obtained from direct allowed transitions in k-space at room temperature. The width of the tail of localized states in the band gap (ΔE) was evaluated using the Urbach-edges method. It was found that both (Eopt) and (ΔE) vary with the concentration of the PEO complex in the polymer matrix. In addition, a correlation between the energy gap and the ac-conductivity as a function of PEO complex concentration is also reported.  相似文献   

14.
15.
The effect of temperature on the fatigue crack growth in a 150 mm class 12 unplasticized polyvinyl chloride (uPVC) pipe-grade material overa temperature range –30–60°C was studied. The Arrhenius relationship between fatigue crack growth rate, da/dN, and absolute temperature, T, was found to describe the experimental data very well independent of the applied stress intensity factor range, K. In the temperature range –30–10°C the activation energy was 8.8 kJ mol–1 and between 26 and 60°C this was 30 kJ mol–1. The two activation energies were found to be associated with two distinctly different crack growth mechanisms. In the low-temperature range there was a predominant shear mechanism, but in the high-temperature range multiple crazing was the major fatigue mechanism. Finally, a stress intensity factor—biased Arrhenius equation for fatigue crack growth was suggested and found to predict rather accurately the data of uPVC, as well as those of other polymeric materials at different temperatures.  相似文献   

16.
17.
Poly(ethylene glycol) (PEG), an environment-friendly reaction medium, has been adopted to accelerate the dehydrochlorination of poly(vinyl chloride) (PVC). Experimental results demonstrated that at 210 degrees C for 1h the dechlorination degree was as high as 74.2% for PVC/PEG, while for PVC only 50.0%. Moreover, from thermogravimetric analysis, it was found that for PVC/PEG the decomposition of PVC corresponding to the dehydrochlorination stage shifted to lower temperatures compared with that of pure PVC, suggesting some interactions exist between PEG and PVC that caused the faster dehydrochlorination rate. In addition, during this process, no waste byproducts such as KCl have been produced, and satisfactory recyclability of PEG (10 cycles) has been obtained.  相似文献   

18.
The effect of four different types of plasticizers and four strain-rates on the tensile behaviour of poly(vinyl chloride) (PVC) has been studied. di(2-ethylhexyl phthalate), benzyl butyl phthalate, epoxidized soyabean oil and chloroparaffin were mixed at different ratios and were used as plasticizers in concentration levels of up to 77% of the PVC weight. The plasticized and unplasticized PVC were processed into sheets by compression moulding. Tensile tests were conducted at different strain rates. It was found that tensile modulus increases with increasing strain rate while it decreases with increasing plasticizer concentration. The rate of variation of tensile modulus either as a function of strain rate and/or the plasticizer concentration was, in all cases, dependent on the mixing ratio of the different types of plasticizers. Assuming the material to be a linearly viscoelastic one, a simple viscoelastic model along with a least-squares-based computer procedure was applied which enabled us to fit the experimentally obtained curves with the respective theoretical predictions as well as to study the strain-rate effect on the relaxation spectrum, H(), of the material under consideration.  相似文献   

19.
A methodology has been developed which is capable of predicting creep/fatigue crack growth rates at ambient and elevated temperatures in Ti 6246. Predictions are based on finite element analysis and strain-control testing of plain specimens. The prediction of fatigue crack growth rates for a given crack configuration and cyclic plastic zone size is assumed to be consistent with the processes leading to crack initiation in plain specimens. Such an assumption leads to the conclusion that a similar stress–strain profile will lead to similar lives in both the plain specimens and in the cyclic plastic zone ahead of a crack in a notched specimen. Therefore, fatigue crack growth results from the accumulation of damage in the cyclic plastic zone ahead of the crack tip. Once the damage accumulated in this element of material becomes critical, the crack propagates through the damaged region into a new region of virgin material where the process of damage accumulation begins again. The creep/fatigue model is described and assessed with reference to measured fatigue crack growth rate data for Ti 6246 at 20 °C and 500 °C.  相似文献   

20.
For low-cycle fatigue tests with smooth bars the number of cycles to initiation is commonly defined from a measured relative drop in maximum load. This criterion cannot be directly related to the crack length, which is the actual measure of interest. In order to establish a relation between load drop and crack length for the high strength titanium alloy Ti-6242, this investigation compares data from controlled low-cycle fatigue crack growth tests and numerical simulations of these tests. To achieve sufficient accuracy in this relation, focus is given to modelling of mean stress relaxation. Three constitutive models, the Chaboche, the Ohno–Wang and the Chaboche with threshold, are evaluated with respect to experiments. Furthermore, a straightforward method with cycle-scaling of the material parameters are used to efficiently reduce calculation cost. It is shown that it is possible to determine the relationship between load drop and crack length from numerical simulations, provided that care is taken to relevant aspects of the materials stress–strain response. These results are also used to numerically evaluate the effect on load drop of the extensometer position relative to the crack.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号