首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
郭庆涛  郑滔 《计算机工程》2011,37(7):222-224,233
对计算广告研究中的计价模型和匹配算法及模型进行综述,分别从检索词匹配精度、语义情景和用户点击反馈等方面对Cosine算法、Okapi BM25算法、特征学习算法、分层学习模型和Multinomial统计语言模型等进行比较分析和优缺点总结,并提出可行的改进 方向。  相似文献   

2.
人类进入21世纪的同时也进入了信息时代,在这个时代生活的人,要有和信息社会接口的能力。因为学习是适应时代生存和发展的根本手段或途径。为了在网络时代中顺利地生存和发展,我们必须对立一种时代学习理念——信息能力。  相似文献   

3.
人类进入21世纪的同时也进入了信息时代,在这个时代生活的人,要有和信息社会接口的能力。因为学习是适应时代生存和发展的根本手段或途径。为了在网络时代中顺利地生存和发展,我们必须对立一种时代学习理念——信息能力。  相似文献   

4.
钱江波  胡伟  陈华辉  董一鸿 《控制与决策》2019,34(12):2567-2575
基于哈希的近邻查找技术在图像检索、文本匹配、数据挖掘等信息检索领域均有广泛应用.该技术将原始数据通过哈希函数压缩成低维的二进制编码,然后在海明距离下排序检索,具有快速高效且维度不敏感的优势.但是,目前学术界针对流数据的实时在线哈希学习方法的研究很少,而且基本没有讨论哈希函数的更新频率和稳定性问题.针对这一问题,通过增加置信区间来减少更换哈希函数的频率,并构造在线学习的目标函数,使得算法尽可能保持稳定,且快速收敛.为了验证所提出算法的效率和有效性,在公开数据集上与同类的OSH、OKH在线哈希算法进行比较,比较结果表明,所提出的算法在平均准确率和训练时间上有一定优势.  相似文献   

5.
Agent技术特别是多Agent系统(MAS,Multi-Agent System)为解决人工智能等领域复杂问题提供了一个新途径,多Agent系统重点研究如何协调系统中的各个Agent的行为使其协同工作。针对多阶段组合投资问题,提出了一个基于多Agent系统的自调节及协同工作的组合投资策略模型。该模型系统中的各个Agent通过通讯共享知识,在求解问题的搜索空间中进行协同搜索,在更短的搜索步长内得到问题的解,极大地提高了系统性能。该模型具有不基于任何股票模型、时间复杂度低以及逼近最优投资策略速度较快等优点,实验证明具有一定的实际意义。  相似文献   

6.
一种Web信息的启发式检索方法   总被引:3,自引:0,他引:3  
Internet是一个开放的全球分布式网络 ,资源分布在世界上不同的地方 ,并且网上资源没有统一的管理和结构 ,导致了信息搜索的困难 .同时 ,Internet是一个有巨大价值的信息源 .因此 ,研究一种快速、高效的 Web信息检索方法是很有实用意义的 .本文提出了一种用相关度及用户兴趣作为评价函数在 Internet上进行启发式搜索及在此基础上利用机器学习有效的实现搜索知识重用的方法  相似文献   

7.
王雪松  彭佳文  熊浪 《计算机工程与设计》2007,28(14):3466-3468,3472
针对多阶段组合投资问题,提出了一个基于多Agent系统的自调节及协同工作的组合投资策略模型.该模型系统中的各个Agent通过通讯共享知识,在求解问题的搜索空间中进行协同搜索,在更短的搜索步长内得到问题的解,极大地提高了系统性能.该模型具有不基于任何股票模型、时间复杂度低以及逼近最优投资策略速度较快等优点,实验证明具有一定的实际意义.  相似文献   

8.
郭一村  陈华辉 《计算机应用》2021,41(4):1106-1112
在当前大规模数据检索任务中,学习型哈希方法能够学习紧凑的二进制编码,在节省存储空间的同时能快速地计算海明空间内的相似度,因此近似最近邻检索常使用哈希的方式来完善快速最近邻检索机制.对于目前大多数哈希方法都采用离线学习模型进行批处理训练,在大规模流数据的环境下无法适应可能出现的数据变化而使得检索效率降低的问题,提出在线哈...  相似文献   

9.
    
Online prediction is a process that repeatedly predicts the next element in the coming period from a sequence of given previous elements. This process has a broad range of applications in various areas, such as medical, streaming media, and finance. The greatest challenge for online prediction is that the sequence data may not have explicit features because the data is frequently updated, which means good predictions are difficult to maintain. One of the popular solutions is to make the prediction with expert advice, and the challenge is to pick the right experts with minimum cumulative loss. In this research, we use the forex trading prediction, which is a good example for online prediction, as a case study. We also propose an improved expert selection model to select a good set of forex experts by learning previously observed sequences. Our model considers not only the average mistakes made by experts, but also the average profit earned by experts, to achieve a better performance, particularly in terms of financial profit. We demonstrate the merits of our model on two real major currency pairs corpora with extensive experiments.  相似文献   

10.
一种构建个性化网络购物搜索引擎模型研究*   总被引:2,自引:0,他引:2  
通过分析在电子商务环境下购物搜索引擎所面临的问题,提出了一种跨网站式的模糊识别多媒体信息购物搜索引擎的模型架构方案,并结合用户个性化的需求进行学习和调整来提高用户的搜索满意度,以提升其购物意愿,进而促进电子商务的发展。运用相关检索指标对该模型进行效能评估,以证明模型的可行性和有效性,并通过分析模型的局限性,提出未来的改进方向。  相似文献   

11.
We propose a new integral-based source selection algorithm for uncooperative distributed information retrieval environments. The algorithm functions by modeling each source as a plot, using the relevance score and the intra-collection position of its sampled documents in reference to a centralized sample index. Based on the above modeling, the algorithm locates the collections that contain the most relevant documents. A number of transformations are applied to the original plot, in order to reward collections that have higher scoring documents and dampen the effect of collections returning an excessive number of documents. The family of linear interpolant functions that pass through the points of the modified plot is computed for each available source and the area that they cover in the rank-relevance space is calculated. Information sources are ranked based on the area that they cover. Based on this novel metric for collection relevance, the algorithm is tested in a variety of testbeds in both recall and precision oriented settings and its performance is found to be better or at least equal to previous state-of-the-art approaches, overall constituting a very effective and robust solution.  相似文献   

12.
袁铭 《计算机应用》2015,35(3):802-806
针对使用网络购物搜索量数据建立预测模型时的变量选择问题,提出一种基于连续小波变换(CWT)及其逆变换的聚类方法。算法充分考虑了搜索量的数据特征,将原始序列分解成为不同时间尺度下的周期成分,并重构为输入向量。在此基础上通过加权模糊C均值(FCM)方法进行聚类。变量选择是根据聚类后每个分类中的关键词隶属度函数值确定的,选择效果通过我国居民消费价格指数(CPI)的预测模型进行验证。结果表明,搜索量序列具有不同长度的周期成分,聚类后同组关键词具有明显的商品类型一致性。与其他变量选择方法相比,基于小波重构序列聚类的预测模型具有更高的预测精度,单步和三步预测相对误差仅为0.3891%和0.5437%,预测变量也具有清晰的经济含义,因此特别适用于解决大数据背景下高维预测模型的变量选择问题。  相似文献   

13.
推导了使用指数损失函数和0-1损失函数的Boosting 算法的严格在线形式,证明这两种在线Boosting算法最大化样本间隔期望、最小化样本间隔方差.通过增量估计样本间隔的期望和方差,Boosting算法可应用于在线学习问题而不损失分类准确性. UCI数据集上的实验表明,指数损失在线Boosting算法的分类准确性与批量自适应 Boosting (AdaBoost)算法接近,远优于传统的在线Boosting;0-1损失在线Boosting算法分别最小化正负样本误差,适用于不平衡数据问题,并且在噪声数据上分类性能更为稳定.  相似文献   

14.
Learning a compact predictive model in an online setting has recently gained a great deal of attention.The combination of online learning with sparsity-inducing regularization enables faster learning with a smaller memory space than the previous learning frameworks.Many optimization methods and learning algorithms have been developed on the basis of online learning with L1-regularization.L1-regularization tends to truncate some types of parameters,such as those that rarely occur or have a small range of values,unless they are emphasized in advance.However,the inclusion of a pre-processing step would make it very difficult to preserve the advantages of online learning.We propose a new regularization framework for sparse online learning.We focus on regularization terms,and we enhance the state-of-the-art regularization approach by integrating information on all previous subgradients of the loss function into a regularization term.The resulting algorithms enable online learning to adjust the intensity of each feature’s truncations without pre-processing and eventually eliminate the bias of L1-regularization.We show theoretical properties of our framework,the computational complexity and upper bound of regret.Experiments demonstrated that our algorithms outperformed previous methods in many classification tasks.  相似文献   

15.
Abstract Designing and implementing effective e-learning is a complex process, which involves many factors. Lecturers need to constantly consider, evaluate and adjust these factors to provide effective e-learning environments for students. In this paper, we report on the design and development of the Online Learning Environment Survey (OLES), an instrument which can be used to gather and represent data on students' 'actual' (experienced) and 'preferred' (ideal) learning environments. We describe the use of this instrument in blended learning environments with university classes, illustrating how OLES can be used by educators striving for good practice in the design of effective online learning environments.  相似文献   

16.
Advertisement (ad) selection plays an important role in sponsored search, since it is an upstream component and will heavily influence the effectiveness of the subsequent auction mechanism. However, mo...  相似文献   

17.
将计算机视觉中的眼球追踪技术应用到网络学习中,以实现对学生网络学习进行实时监控。首先根据网页浏览模式建立具有信息热点的学习网站,然后借助OpenCV技术追踪眼球移动轨迹,计算出视点在屏幕上的轨迹及注视时长,综合运用这些信息来评判学生的学习状态。实验表明,该方法具有可行性,能够在一定程度上促进网络教学的开展。  相似文献   

18.
吴婉婷  朱燕  黄定江 《计算机应用》2019,39(8):2462-2467
针对传统投资组合策略的高频资产配置调整产生高额交易成本从而导致最终收益不佳这一问题,提出基于机器学习与在线学习理论的半指数梯度投资组合(SEG)策略。该策略对投资期进行划分,通过控制投资期内的交易量来降低交易成本。首先,基于仅在每段分割的初始期调整投资组合而其余时间不进行交易这一投资方式来建立SEG策略模型,并结合收益损失构造目标函数;其次,利用因子图算法求解投资组合迭代更新的闭式解,并证明该策略累积资产收益的损失上界,从理论上保证算法的收益性能。在纽约交易所等多个数据集上进行的仿真实验表明,该策略在交易成本存在时仍然能够保持较高的收益,证实了该策略对于交易成本的不敏感性。  相似文献   

19.
A linear model tree is a decision tree with a linear functional model in each leaf. Previous model tree induction algorithms have been batch techniques that operate on the entire training set. However there are many situations when an incremental learner is advantageous. In this article a new batch model tree learner is described with two alternative splitting rules and a stopping rule. An incremental algorithm is then developed that has many similarities with the batch version but is able to process examples one at a time. An online pruning rule is also developed. The incremental training time for an example is shown to only depend on the height of the tree induced so far, and not on the number of previous examples. The algorithms are evaluated empirically on a number of standard datasets, a simple test function and three dynamic domains ranging from a simple pendulum to a complex 13 dimensional flight simulator. The new batch algorithm is compared with the most recent batch model tree algorithms and is seen to perform favourably overall. The new incremental model tree learner compares well with an alternative online function approximator. In addition it can sometimes perform almost as well as the batch model tree algorithms, highlighting the effectiveness of the incremental implementation. Editor: Johannes Fürnkranz  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号