首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 62 毫秒
1.
模拟含H2S/CO2高温高压井下腐蚀环境,研究温度对80SS油管钢腐蚀行为的影响.结果表明:随着温度升高,80SS油管钢的腐蚀速率呈现先增大后减小的趋势,在100℃时腐蚀速率达到最大(6.13 mm/a);150℃时腐蚀速率下降到4.14mm/a.随着温度升高,材料表面形成的腐蚀产物膜由致密、覆盖均匀逐渐变得颗粒粗大且疏松,当温度超过100℃时,腐蚀产物膜又变得颗粒较小且致密;膜的厚度也呈现先增加后减小的趋势;80SS油管钢的腐蚀形态为均匀腐蚀;在温度低于100℃时腐蚀产物膜主要由FeCO3和FeS0.9组成;高温(150℃)时,腐蚀中夹杂了Fe的氧化,产物膜主要由FeO(OH)、FeCO3和FeS0.9组成.  相似文献   

2.
胥聪敏 《化工学报》2011,62(3):773-778
采用电化学测试、SEM及EDS微观分析等方法,研究了X80管线钢在陕北水饱和盐渍土壤中的电化学腐蚀行为。结果表明,在水饱和盐渍土壤中,随腐蚀时间延长,X80钢腐蚀趋势和腐蚀速率均明显增大,局部腐蚀面积和深度不断增加,钢基体表面由以全面腐蚀为主转为以局部腐蚀为主,腐蚀机理为氧浓差腐蚀电池和局部腐蚀自催化效应,腐蚀速度主要受氧扩散过程控制;EIS图谱具有双容抗弧与Warburg阻抗特征,电荷传递和扩散传质的阻力随时间越来越大,而结合层电阻明显减小,这与钢表面生成腐蚀产物膜的完整性和致密性有关,腐蚀产物主要为铁的氧化物、硫化物和土壤中盐类的混合物。  相似文献   

3.
孟庆伟 《当代化工》2021,50(7):1658-1661,1666
为研究交流电作用下X70管线钢腐蚀行为,利用电化学方法探求交流腐蚀的发展行为及作用机理,运用扫描电镜技术结合腐蚀形貌分析,直观地对X70管线钢交流腐蚀机理展开研究.结果表明:不同交流电密度下发生了规律性的均匀腐蚀、环状腐蚀和点蚀3种情况.当电流密度低于20 A·m-2情况下,不发生明显腐蚀;电流密度升至30 A·m-2...  相似文献   

4.
采用电化学阻抗谱(EIS)及动电位扫描技术研究了温度和pH值对X80管线钢在库尔勒土壤中的腐蚀行为,并利用金相显微镜观察了不同温度及pH值下的腐蚀形貌。结果表明:X80管线钢在库尔勒土壤环境中会形成一层保护性较好的钝化膜,且随着温度的升高,钝化膜稳态电流增大;而膜电阻及扩散电阻则随介质pH值的增强而减小,X80钢的腐蚀速率随之减小。  相似文献   

5.
油气管道腐蚀防护分析对油气储运安全管理具有重要意义,目前大口径长输油气管道采用X80钢材质较多,特别是针对含硫油气介质管道,对此类管道腐蚀仍然需要进一步分析。探讨了X80钢材常见了两种腐蚀情况,即硫酸盐还原菌和土壤腐蚀,分析了腐蚀的机理。并利用室内试验分析了X80钢抗硫管道腐蚀情况,研究表明,腐蚀速率在0.88mm/a,未见局部腐蚀产生。  相似文献   

6.
油田套管损坏的问题在我国很多油田日益严重,影响油田生产的顺利进行,甚至引起井压失控等复杂问题,造成巨大的经济损失。N80钢作为油田套管的主要用材之一,其显微组织为针状铁素体加少量贝氏体,具有优良的耐蚀和力学性能,  相似文献   

7.
叶福相  姚军  刘玉发  赵彦琳  董士刚 《化工进展》2021,40(12):6450-6459
长距离油气输运管道运行工况复杂,事故频发,冲蚀腐蚀是导致管道局部失效的典型问题之一,受多因素作用影响。为探究管道钢冲蚀腐蚀多因素影响机制,通过全因子实验设计方法,量化比较了包含不同颗粒浓度、冲击角度、氯离子浓度和pH的多变量系统中单一因素和因素间相互作用对X80管道钢冲蚀腐蚀损失的影响效应,并分析了它们的显著性与方向性。统计学分析结果表明,4个单一因素对冲蚀腐蚀损失均有显著影响,其中颗粒浓度和氯离子浓度与冲蚀腐蚀损失正相关,pH和冲击角度与冲蚀腐蚀损失负相关;因素间协同作用中只有颗粒浓度与氯离子浓度之间的协同作用以及颗粒浓度与冲击角度之间的协同作用效应显著,其余交叉因素效应不显著。此外,根据这些因子对X80管道钢冲蚀腐蚀质量损失速率影响的显著性,给出了作用大小排序,并通过显微照片分析了不同条件下材料损失模式,讨论了因素间协同作用机制,用示意图对因素作用效果和作用机理进行了解释。  相似文献   

8.
采用失重法、电化学测试、SEM、EDS等方法,研究了X80管线钢在鄯善土壤模拟溶液中的腐蚀行为。结果表明:X80钢在3个测试点模拟土壤溶液中以全面腐蚀为主,局部位置发生点蚀;在不同模拟溶液中的腐蚀速率大小依次为AN000>AN065>AN016;随着浸泡时间的增加,Ca2+吸附在X80钢表面并形成Ca的产物层,有效地减缓了X80钢在AN016模拟溶液中的腐蚀。在含盐量较高的土壤环境中,富集在钢基表面的结晶盐对钢的腐蚀具有一定的减缓作用。  相似文献   

9.
《广州化工》2021,49(17)
为了研究油气田现场生产工况下硫酸盐还原菌对20#钢腐蚀行为的影响,本文通过细菌培养实验、腐蚀失重实验等实验方法,利用激光共聚焦显微镜,扫描电镜等仪器,研究了矿化度、温度、H_2S、CO_2对硫酸盐还原菌(SRB)生长活性及对20#钢腐蚀行为的影响。结果表明:矿化度升高影响SRB细菌活性,SRB细菌导致的腐蚀行为减弱;温度变化对SRB细菌生长活性影响较大,高温下腐蚀主要由溶液自身环境造成;H_2S分压、CO_2分压对SRB细菌生长影响不大。  相似文献   

10.
张益萱 《当代化工》2021,50(6):1302-1307,1313
与管线母材相比,焊缝是管线失效的关键部位之一.针对含CO2/H2O的天然气管线母材和焊缝在稳态和动态条件下的电化学腐蚀行为,通过三电极体系和高温高压反应釜相结合开展20 d的浸泡实验,得到不同条件下母材和焊缝的电化学阻抗特征,通过等效电路拟合相关参数的变化规律建立不同阶段母材和焊缝的腐蚀过程,并通过腐蚀形貌分析和腐蚀产...  相似文献   

11.
X80级管线钢的发展及腐蚀实验研究概况   总被引:1,自引:0,他引:1  
分析了我国的石油天然气消费利用及油气管道建设现状,对国内外X80管线钢的研制和应用情况进行了介绍,同时介绍了国内X80管线钢的腐蚀研究情况.介绍了不同pH值对X80管线钢土壤腐蚀行为的影响以及腐蚀产物钝化膜对钢表面的腐蚀行为与过程的影响.X80级管线钢的抗硫化物应力腐蚀开裂(SSCC)和氢致开裂(HIC)行为的结果表明...  相似文献   

12.
以典型的管线钢材料X80钢为对象,采用动电位极化和电化学阻抗谱技术,研究了在弹性拉伸应力(60%σ_(ys))和塑性拉伸应力(108%σ_(ys))状态下,不同CO_2分压和Cl~-质量分数对材料腐蚀的影响规律。结果表明:受拉伸应力作用的X80钢腐蚀速率随CO_2分压的增大而增大,但并非单纯正相关关系;随Cl~-质量分数的增大,呈现先升高后降低的规律,当Cl~-质量分数为3.5%时,X80钢的腐蚀速率达到最大值。此外,塑性应力状态下X80钢的腐蚀速率明显高于弹性应力状态下的值,原因是塑性应力提高了金属表面的电化学反应活性。  相似文献   

13.
《化工机械》2017,(6):633-637
以球-盘接触方式,通过X80管线钢(评价材料)与淬硬冷作模具钢Cr12Mo V(62±1HRC,对偶材料)的干式滑动摩擦磨损试验,揭示了滑动速度和法向载荷对摩擦特性的影响规律,分析了X80管线钢磨损表面的磨损机理。结果表明,滑动速度在0.05~0.15m/s范围时对摩擦系数的影响有限;当滑动速度在0.15~0.25m/s范围时对摩擦系数的影响较大。当载荷在1~3N范围时对摩擦系数的影响较大;载荷在3~9N范围对摩擦系数基本无影响。X80管线钢的磨损率随滑动速度的增大以线性方式增大,而随载荷的增大以非线性方式升高,载荷越大,影响越显著。X80管线钢的磨损以磨粒磨损与粘结磨损为主,疲劳磨损为辅。  相似文献   

14.
陈达  周岩 《当代化工》2018,(8):1644-1646
许多油气管道断裂事故与高p H值应力腐蚀开裂(SCC)有关。X70钢是油气管道常用的管材。采用慢应变速率拉伸试验(SSRT)研究在不同电位下X70管线钢母材和和焊缝在高p H值溶液中的应力腐蚀开裂(SCC)行为。实验结果表明:当外加电位位于钝化区,因存在完整钝化膜,X70钢应变值、伸长率和断面收缩率最大;在自腐蚀电位下,因为阴极反应和阳极反应平衡,所以X70钢应变值、伸长率和断面收缩率位居其次;当位于活化钝化转变区时,由于钝化膜不完整,阳极活化反应仍占主导地位,应变值、伸长率和断面收缩率小于自腐蚀电位下的试样;位于活化区的试样,由于以阳极反应为主,所以应变值、伸长率和断面收缩率最小。  相似文献   

15.
通过动电位极化扫描和电化学交流阻抗方法,研究了L245NS 管线钢在含硫油田地面集输环境下的电化学腐蚀行为,并拟合分析了腐蚀热动力学参数。结果表明:(1) L245NS 管线钢在 0.1% NaCl 或 5%NaCl+饱和 CO2基础介质中加入含硫物质后,极化曲线的腐蚀电流密度(icorr)增大显著;介质中 Cl-浓度增大 icorr值增大,对比含硫介质中 Cl-浓度增大 icorr值却有所降低。(2) Nyquist 谱含中高频区的容抗和低频区的 Warburg阻抗扩散的特征,加入含硫物质后中高频区的容抗弧显著减小,Rt值降低显著,Zw值减小。(3)在低 Cl-浓度介质中引入较低含硫物质后,会促进对碳钢的 CO2腐蚀,而在较高 Cl-浓度介质中引入较低含硫物质后,则对腐蚀有所减缓。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号