共查询到20条相似文献,搜索用时 15 毫秒
1.
A mathematical model of control mechanism used in the variable displacement swash plate compressor (VDSC) is developed firstly based on the force balance equation, mass and energy conservation equation. The model of moving components dynamics is developed then by analyzing the forces and force moments acting on the pistons and the swash plate. The compression process model is obtained by fitting the data from our experiments. And finally, the steady-state mathematical model of VDSC is developed by combining the three sub-models above. In order to verify the mathematical model, a test bench for control mechanism and the test system for VDSC have been established, and the simulated results agree well with the experimental data. The simulation results show that, like the variable displacement wobble plate compressor, there are four operation modes for the VDSC, i.e. constant rotary speed and constant piston stroke length (PSL), variable rotary speed and constant PSL, constant rotary speed and variable PSL, variable rotary speed and variable PSL, which have included almost all operation modes of the refrigeration compressor in common use. And there is a hysteresis zone and multiple-valued relationship between the compressor parameters when PSL changes. 相似文献
2.
Instability of automotive air conditioning system with a variable displacement compressor. Part 2. Numerical simulation 总被引:3,自引:0,他引:3
Changqing Tian Chunpeng Dou Xinjiang Yang Xianting Li 《International Journal of Refrigeration》2005,28(7):2169-1110
A test system is built first in order to investigate the instability of the automotive air conditioning (AAC) system with a variable displacement compressor (VDC), and hunting phenomena caused by the large external disturbance in the AAC system with a VDC and a thermal expansion valve, and in the AAC system with a VDC and a fixed-area throttling device are investigated experimentally in part 1 of this paper. The experimental results indicate that there also exist the hunting phenomena in the AAC system with a fixed-area throttling device. The system stability is found to be dependent on the direction of the external disturbance, and the system is apt to cause hunting when the condensing pressure decreases excessively since it may cause two-phase state at the throttling device inlet and make a large disturbance to the system. The piston stroke length will oscillate only when the oscillation amplitudes of forces acting on the wobble plate are great enough, otherwise the piston stroke length will be kept invariable, and then the system instability rule is also suitable for the AAC system with a fixed displacement compressor. From the experimental results, it is concluded that the two-phase flow at the throttling device inlet or at the evaporator outlet is the necessary condition but not sufficient condition for system hunting. Finally, a new concept, conservative stable region, is proposed based on the experimental results and theoretical analysis. 相似文献
3.
Wobble plate compressors are well used in air conditioning for high-class automobiles. They allow continuous control by automatic adjustment of the piston stroke, to keep the low pressure above a certain limit. Here an externally controlled wobble plate compressor is analyzed experimentally through its isentropic and volumetric effectivenesses and control characteristics. Compressor effectivenesses depend mainly on the compressor speed and pressure ratio: there is obtained, for example, isentropic and volumetric effectivenesses of 0.65 and 0.8 for a pressure ratio of 4 at 1000 rpm and 0.4 and 0.35 for the same pressure ratio at 4000 rpm. This degradation is attributed to the increasing of the supply pressure drop. The “lubricant” (oil + dissolved refrigerant) mass flow rate is obtained by minimization of the residuals of the thermal balances on the compressor, condenser and evaporator. Here an important oil-flow circulation is obtained: between 9.5% and 12.5% of the refrigerant flow rate. A special displacement sensor is used to measure instantaneous piston stroke and to relate it to overall compressor performance. This measurement is then compared with the results obtained with a semi-empirical model, which is able to predict, in part load, the compressor displacement. The model predicts the displacement ratio with deviations that vary between −14.5% and +8.1%. 相似文献
4.
A stream analysis model was developed to simulate the behavior of accumulators and their influence on the automotive air conditioning (A/C) systems. It allows a comprehensive steady state simulation with a set of input conditions such as refrigerant vapor mass flow rate and pressure at the inlet of an accumulator. In this study, the refrigerant/oil mixture is R134a/PAG oil which are totally miscible, but could be any air conditioning refrigerant/oil, including carbon dioxide (CO2)/oil. The model accounts for all major effects inside the accumulator, such as friction, bends, sudden expansion, sudden contraction and heat exchange. The outputs are vapor quality, pressure and temperature at various positions of accumulator. In order to verify the mathematical model, experiments are performed in an experimental setup made up of real size automotive air conditioning components. The simulated results agree well with the experimental data. The simulation and experimental results show an important function of accumulators that is to determine the vapor quality into compressor, and thus has influence on the performance of whole automotive A/C systems. 相似文献
5.
Modeling and experimental evaluation of an automotive air conditioning system with a variable capacity compressor 总被引:10,自引:0,他引:10
J. M. Saiz Jabardo W. Gonzales Mamani M. R. Ianella 《International Journal of Refrigeration》2002,25(8):1157-1172
A steady state computer simulation model has been developed for refrigeration circuits of automobile air conditioning systems. The simulation model includes a variable capacity compressor and a thermostatic expansion valve in addition to the evaporator and micro channel parallel flow condenser. An experimental bench made up of original components from the air conditioning system of a compact passenger vehicle has been developed in order to check results from the model. The refrigeration circuit was equipped with a variable capacity compressor run by an electric motor controlled by a frequency converter. Effects on system performance of such operational parameters as compressor speed, return air in the evaporator and condensing air temperatures have been experimentally evaluated and simulated by means of developed model. Model results deviate from the experimentally obtained within a 20% range though most of them are within a 10% range. Effects of the refrigerant inventory have also been experimentally evaluated with results showing no effects on system performance over a wide range of refrigerant charges. 相似文献
6.
The effect of different type of condensers on the performance of R410A residential air-conditioning systems was investigated in this study. Two R410A residential air-conditioning systems, one with a microchannel condenser and the other with a round-tube condenser, were examined experimentally, while the other components of the two systems were identical except the condensers. Two condensers had almost same package volumes. The two systems were operated in separate environmental chambers and their performance was measured in ARI A, B, and C conditions. Both the COP and cooling capacity of the system with the microchannel condenser were higher than those for the round-tube condenser in all test conditions. The refrigerant charge amount and the refrigerant pressure drop were measured; the results showed a reduction of charge and pressure drop in the microchannel condenser. A numerical model for the microchannel condenser was developed and its results were compared with the experiments. The model simulated the condenser with consideration given to the non-uniform air distribution at the face of the condenser and refrigerant distribution in the headers. The results showed that the effect of the air and refrigerant distribution was not a significant parameter in predicting the capacity of the microchannel condenser experimentally examined in this study. Temperature contours, generated from the measured air exit temperatures, showed the refrigerant distribution in the microchannel condenser indirectly. The temperature contours developed from the model results showed a relatively good agreement with the contours for measured air exit temperatures of the microchannel condenser. 相似文献
7.
Experimental investigation on convective heat transfer mechanism in a scroll compressor 总被引:1,自引:0,他引:1
This paper describes an experimental study on the convective heat transfer inside the scroll compressor. An experimental refrigeration system is composed with extensive instrumentations in the compressor that is operated at variable speeds. The 13 thermocouples installed inside the compressor monitor the temperatures of the scroll wrap during compression process of refrigerant. The temperature and the pressure of refrigerant at suction, and the pressure at discharge ports are measured, and applied to the numerical simulation as the operating condition parameters. The temperature measured at the discharge port is used to verify the simulation result with relevant heat transfer coefficient. This paper describes the effect of motion of the orbiting scroll on the convective heat transfer in the scroll wraps. Separate experiments are performed to investigate the heat transfer in such a peculiar physical condition. With this experimental result, the effect of the oscillation of the wall on the heat transfer is quantitatively analyzed and applied to the simulation of compression process in scroll compressor. The whole consecutive compression processes in the scroll compressor is simulated in detail by solving equations of mass and energy balance for the refrigerant. The modified heat transfer coefficient correlation considering the effect of motion of the orbiting scroll predicts the discharge temperature better than other typical heat transfer coefficients. 相似文献
8.
King-Leung Wong Tsung-Lieh Hsien Peter Richards Bing-Shyan Her 《International Journal of Refrigeration》2005,28(7):1029-1039
The heat-transfer characteristics of an insulated long rectangular or square duct are analyzed by using the one-dimensional plane wedge thermal resistance (PWTR) model and plate thermal resistance (PTR) model in this study. It is found that the errors generated by the PWTR model are all positive and the errors generated by the PTR model are all negative. Thus, the combined plate wedge thermal resistance (CPWTR) model generated by paralleling PWTR and PTR models with the proportion factors of α=0.6 vs. β=0.4 (64-CPWTR model) can neutralize the positive and negative errors and obtain very accurate results in comparison with the two-dimensional numerical solutions analyzed by the CFD software. The errors generated by the one-dimensional 64-CPWTR model are within 1% for practical sizes and practical insulated thickness in air conditioning and refrigeration systems. Thus, the engineer can obtain very reliable heat transfer results when applying the one-dimensional 64-CPWTR model to an insulated rectangular duct. 相似文献
9.
Experimental performance analysis and modelling of liquid desiccant cooling systems for air conditioning in residential buildings 总被引:2,自引:0,他引:2
D. Pietruschka U. Eicker M. Huber J. Schumacher 《International Journal of Refrigeration》2006,29(1):110-124
The paper presents a new desiccant cooling cycle to be integrated in residential mechanical ventilation systems. The process shifts the air treatment completely to the return air side, so that the supply air can be cooled by a heat exchanger. Purely sensible cooling is an essential requirement for residential buildings with no maintenance guarantee for supply air humidifiers. As the cooling power is generated on the exhaust air side, the dehumidification process needs to be highly efficient to provide low supply air temperatures. Solid rotating desiccant wheels have been experimentally compared with liquid sorption systems using contact matrix absorbers and cross flow heat exchangers. The best dehumidification performance at no temperature increase was obtained in an evaporatively cooled heat exchanger with sprayed lithium chloride solution. Up to 7 g kg−1 dehumidification could be reached in an isothermal process, although the surface wetting of the first prototype was low. The process then provides inlet air conditions below 20 °C for the summer design conditions of 32 °C, 40% relative humidity. With air volume flow rates of 200 m3 h−1 the system can provide 886 W of cooling power.A theoretical model for both the contact absorber and the cross flow system has been developed and validated against experimental data for a wide range of operating conditions. A simulation study identified the optimisation potential of the system, if for example the surface wetting of the liquid desiccant can be improved. 相似文献
10.
In this paper, feedback controller design for the air-conditioning system is addressed through systematic modeling and identification. Particularly, the physical model of the system reveals the key parameter that dictates energy efficiency, and the identification procedure produces a low-order, linear model suitable for controller design. The feedback controller employed is multi-input–multi-output-based and possesses a cascade structure for dealing with the fast and slow dynamics in the system. To determine appropriate control parameters, conditions that establish performance and stability of the cascade design are given. Experiments show that the controller can simultaneously achieve satisfactory transient response in the indoor temperature, and improve energy efficiency at steady state. 相似文献
11.
C. Oliet C.D. Prez-Segarra S. Danov A. Oliva 《International Journal of Refrigeration》2007,30(7):1266-1277
The aim of this paper is to present a developed semi-analytical model for the simulation of dehumidifying air–liquid fin-and-tube heat exchangers. The simulation strategy and the mathematical methodology are described in detail. The model is based on -NTU method, and formulated in a compact way for dry and wet surface situations (temperature or enthalpy driven, respectively). Both rating and design procedures have been developed for fully dry, partially wet, or fully wet surface conditions. The model predictions are compared with experimental data obtained on a wavy and a plain finned heat exchanger, giving reasonably accurate results. The limitations of the empirical information used are clearly identified in the work. The aim of this model is to provide a fast but reliable rating and design numerical tool for air–liquid heat exchanger applications. 相似文献
12.
The goal of the study presented in this paper was to evaluate the impact of different filter types on the performance of three typical packaged air conditioners under both clean and fouled conditions. In a companion paper, combinations of six different levels of filtration and four different coils were tested under clean and fouled conditions. From the tests, it was found that fouling has a relatively small impact on air-side effective heat transfer coefficient, but can have a large impact on coil pressure drop. Data from the experimental study were used in developing simulation models for the three packaged air conditioners. Simulations show that the equipment cooling capacity is reduced with fouling primarily because of a decrease in air flow due to the increased pressure drop. In most cases, EER (energy efficiency ratio) was reduced with fouling primarily due to increased fan power. However, the changes in EER were relatively small, in the range of 1–10%. Equipment having low efficiency filters had higher EER after fouling than equipment with high efficiency filters, because high efficiency filters result in significantly higher pressure drops than low efficiency filters. The impact of the evaporator side fan efficiency was found to be significant. The energy penalty associated with high efficiency filters was reduced greatly when fan efficiency increased. Although high efficiency filters cause higher energy penalties they provide considerably better air quality. The quantity of dust passing through the coil with an MERV14 filter was approximately 30 times less than the dust passing the coil with an MERV4 filter. This difference was doubled when the MERV14 filter was compared to a case with no filter in place. 相似文献
13.
Application of thermal battery in the ice storage air-conditioning system as a subcooler 总被引:1,自引:0,他引:1
Ming-Chao Huang Bo-Ren Chen Ming-Jer Hsiao Sih-Li Chen 《International Journal of Refrigeration》2007,30(2):245-253
This article experimentally investigates the thermal performance of a thermal battery used in the ice storage air-conditioning system as a subcooler. The thermal battery utilizes the superior heat transfer characteristics of two-phase closed thermosyphon and eliminates the drawbacks found in convectional energy storage systems. Experimental investigations are first conducted to study the thermal behavior of thermal battery under different charge temperatures (−5 °C to −9 °C) in which water is used as the energy storage material. This study also examines the thermal performance of the subcooled ice storage air conditioner under different cooling loads. Experimental data of temperature variation of water, ice fraction, refrigerant mass flow rate and coefficient of performance (COP) are obtained. The results show that supercooling phenomenon appears in the water and it can be ended when the charge temperature is lower than −6 °C. The system gives 28% more cooling capacity and 8% higher COP by the contribution of the thermal battery used as a subcooler. 相似文献
14.
The paper is aimed to develop a high performance rotary solid desiccant cooling system using a novel compound desiccant wheel (DW). The unique feature of the desiccant wheel is that it can work well under a lower regeneration temperature and have a higher dehumidification capacity due to the contribution of the new compound desiccant materials. Experimental results indicate that the novel desiccant wheel under practical operation can remove more moisture from the process air by about 20–40% over the desiccant wheel employing regular silica gel. A mathematical model that is used to predict the system performance has been validated with the test results. By integrating the desiccant wheel with evaporative cooling, heat recovery and heating for regeneration sections, a solid desiccant cooling system can be formed. Simulation results show that because of the use of the new compound desiccant, the desiccant cooling system can work under much lower regeneration temperature and have a relative high COP, thus low grade thermal energy resources, such as solar energy, waste heat, etc., can be efficiently utilized to drive such a cooling cycle. 相似文献
15.
Christian J.L. Hermes Cludio Melo Cezar O.R. Negro 《International Journal of Refrigeration》2008,31(2):335-347
This study presents a first-principles mathematical model developed to investigate the thermal behavior of a plate-type, roll-bond evaporator. The refrigerated cabinet was also taken into account in order to supply the proper boundary conditions to the evaporator model. The mathematical model was based on the mass, momentum and energy conservation principles applied to each of the following domains: (i) refrigerant flow through the evaporator channels; (ii) heat diffusion in the evaporator plate; and (iii) heat transmission to the refrigerated cabinet. Empirical correlations were also required to estimate the shear stresses, and the internal and external heat transfer rates. The governing partial differential equations were discretized through the finite-volume approach and the resulting set of algebraic equations was solved by successive iterations. Validation of the model against experimental steady-state data showed a reasonable level of agreement: the cabinet air temperature and the evaporator cooling capacity were predicted within error bands of ±1.5 °C and ±6%, respectively. 相似文献
16.
An experimental study on frosting of laminar air flow on a cold surface with local cooling 总被引:1,自引:1,他引:1
Jeong-Tae Kwon Hyo Jae Lim Young-Chul Kwon Shigeru Koyama Dong-Hwi Kim Chieko Kondou 《International Journal of Refrigeration》2006,29(5):754-760
This paper presents the heat and mass transfer characteristics of the humid airflow in frosting conditions. A flat plate of aluminum with cooling modules at the central region was used for the simulation of flat surface part of the fin of the heat exchanger. The local surface temperature of the plate and the local thickness and total mass of the frost on the plate were measured to analyze the heat and mass transfer characteristics. In order to analyze the frosting characteristics, an analysis algorithm was developed, which can provide the local air temperature, the frost surface temperature, the sensible and the latent heat flux distributions at the test plate. Also, by integrating the local heat flux distribution, the average heat flux characteristics were analyzed. The present experiment and analysis found that the characteristic of the upstream airflow was very different from that of the downstream airflow. 相似文献
17.
Effect of deflecting ring on noise generated by outdoor set of a split-unit air conditioner 总被引:1,自引:0,他引:1
In order to analyze the influence of the deflecting ring on the noise generated by the outdoor set of a split-unit air conditioner, the flow field in the outdoor set is simulated with the CFD software STAR-CD, the relative turbulent intensities are computed and the influence of the width and contoured duct of the deflecting ring on the noise generated by the outdoor set is analyzed. The results of computation and experiment show that there is an optimal width of the deflecting ring, corresponding to the minimum noise generated by the outdoor set. In addition, the influence of the contoured duct of the deflecting ring on the noise generated by the outdoor set is analyzed and a double contoured duct is designed. The results of computation and experiment verify that the deflecting ring with double contoured duct can improve the aerodynamic performance and reduce the noise generated by the outdoor set. 相似文献
18.
E. Navarro E. Granryd J.F. Urchueguía J.M. Corbern 《International Journal of Refrigeration》2007,30(7):1254-1265
A new model for hermetic reciprocating compressors is presented. This model is able to predict compressor efficiency and volumetric efficiency in terms of a certain number of parameters (10) representing the main sources of losses inside the compressor. The model provides users with helpful information about the way in which the compressor is designed and working.A statistical fitting procedure based on the Monte Carlo method was developed for its adjustment. The model can predict compressor performance at most points with a maximum deviation of 3%.A possible gas condensation on cold spots inside the cylinder during the last part of the compression stroke was also evaluated. 相似文献
19.
Jos Rui Camargo Carlos Daniel Ebinuma Jos Luz Silveira 《International Journal of Refrigeration》2005,28(7):2399
This paper presents the basic principles of the evaporative cooling process for human thermal comfort, the principles of operation for the direct evaporative cooling system and the mathematical development of the equations of thermal exchanges, allowing the determination of the effectiveness of saturation. It also presents the results of experimental tests in a direct evaporative cooler that take place in the Air Conditioning Laboratory at the University of Taubaté Mechanical Engineering Department, and the experimental results are used to determinate the convective heat transfer co-efficient and to compare with the mathematical model. 相似文献
20.
Hongsheng Liu Jiangping Chen Zhijiu Chen 《International Journal of Refrigeration》2005,28(8):1293-1301
In this study, a CO2 automotive air conditioner prototype was designed and constructed. The compressor was of swash plate design; the gas cooler and evaporator were made of fin-tubes; a manual expansion valve and an internal heat exchanger accumulator were used. The lubricant, the CO2 charge, the evaporator outlet pressure, the compressor speed, the air inlet temperature and flow rate of the gas cooler and the air flow rate of the evaporator were varied and the performance of the prototype was experimentally investigated in detail. The cooling capacity, compressor power consumption, CO2 mass flow rate, and COP value were analyzed. The experimental results showed that the CO2 system performance was greatly affected by different lubricants; the CO2 system performance was sensitive to the mass charge; the high side pressure affected the system performance greatly and a high side pressure controller was needed. 相似文献