首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
To reduce the external volume of Stirling engines and to increase the specific power per unit volume, a novel mechanical arrangement is used where the power cylinder is concentrically situated inside the displacer cylinder. The inner heat transfer surface requirement and the thermodynamic performance characteristics are predicted preparing a nodal analysis in FORTRAN, where the inner volume of the engine is divided into 103 cells. Variation of the temperature in cells is calculated using the first law of thermodynamics, given for unsteady open systems, after arranging the enthalpy inflow and outflow terms. Volumes of cells are calculated using kinematic relations devised for the driving mechanism.The analysis indicates that the heats received from and delivered to the regenerator are not equal to each other. Therefore, the ends of the regenerator should be coupled with a heater and a cooler. The maximum thermal efficiency appears at the minimum mass of working fluid as the minimum thermal efficiency appears at the maximum mass of working fluid. The work increases up to a certain value of working fluid and then decreases. The thermal efficiency increases until a certain value of regenerator area and then decreases as well. Fluid temperature in the hot volume and cooler differs from the wall temperature at significant rates.  相似文献   

2.
This study intended to improve the performance of the beta‐type Stirling engine, being developed by the authors for solar energy and low‐grade heat sources, by means of displacer surface treatments. Three different displacers were manufactured and tested where one of them was without any surface treatment, other was zirconium coated with 0.15 mm thickness, and the other was helically knurled with 0.30 mm track depth. Because of good thermo‐physical properties, helium was used as the working fluid. The heat was supplied by an LPG burner. Tests were conducted at 360±10°C hot end temperature. The highest engine power was obtained with knurled displacer as 250 W at 545 rpm speed and corresponding to this power 4.38 Nm torque was obtained. This was followed by coated and smooth displacers. Power increments provided by the knurled displacer are 40 and 60% compared with the zirconium‐coated and untreated displacers. Increments of knurled displacer's torque compared with that of coated and untreated displacers are 13 and 30%, respectively. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
In this study, a gamma‐type low temperature differential Stirling engine was designed and manufactured. The displacer and piston of the engine were concentrically situated to each other. The engine was tested by using a liquefied petroleum gas burner at laboratory conditions. The working fluid was ambient air at atmospheric pressure. Test procedure intended to investigate the speed‐torque and speed‐power characteristics of the engine depending on the hot‐end temperature. Two different displacers made of aluminum alloy and medium density fiberboard were used. The maximum torque and power obtained were 0.166 Nm at 125 rpm speed and 3.06 W at 215 rpm speed, respectively, at 160 °C hot‐end temperature with medium density fiberboard displacer. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Under the consideration of the solar energy potential of Turkey, a V-type Stirling engine having two heaters was designed, optimized and then manufactured. The prototype engine was tested in laboratory condition using an electrical heating system. Tests were conducted within the temperature range of 650–1000 °C with 50 °C increments. The pressure ranged from the ambient value to 2 bar with 0.5 bar increments at each stage of temperature. The maximum power was obtained at 950 °C and 1.0 bar charge pressure as 118 W.  相似文献   

5.
The present work deals with the measurement and performance of a gamma Stirling engine of 500 W of mechanical shaft power and 600 rpm of maximal revolutions per minute. Series of measurements concerning the pressure distribution, temperature evolution, and brake power were performed. The study of the different functioning parameters such as initial charge pressure, engine velocity, cooling water flowrate, and temperature gradient (between the sources of heat) has been analyzed. The engine brake power increases with the initial charge pressure, with the cooling water flow, and with the engine revolutions per minute. The working fluid temperature measurements have been recorded in different locations symmetrically along both regenerator sides. The recorded temperature in regenerator side one is about 252 °C and about 174 °C in the opposite side (side two). It shows an asymmetric temperature distribution in the Stirling engine regenerator; consequently, heat transfer inside this porous medium is deteriorated. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
Stirling engines are power machines that operate over a closed, regenerative thermodynamic cycle with the ability to use any heat source from the outside, including hydrogen, solar energy, and biomass fuels. In this work, the development of a beta‐type Stirling engine is presented. The improved similarity design and optimization methods are described in detail, as are the key parameters of the constructed prototype and the arrangement of the entire test rig. A new structure for the expansion exchangers is developed to reduce the flow loss. The performance test of the prototype engine is conducted under laboratory conditions using an electrical heating system. In this test, the temperature and the pressure of the working fluid are monitored by thermocouples and pressure sensors, respectively. The speed and the torque of the output shaft are obtained by the dynamometer. Finally, the preliminary test results with the prototype engine are shown. The maximum output shaft power can reach 288 W at 600°C and 15‐bar charge pressure. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
许行  宋鸿杰 《能源工程》2011,(4):32-35,40
用绝热分析法建立并模拟了斯特林循环的理想绝热模型,仿真结果显示,增大循环压力能提高斯特林发动机的做功能力,这为以后建立非理想绝热模型和节点分析模型奠定了基础.  相似文献   

8.
In this research, a gamma-type, low-temperature differential (LTD) solar Stirling engine with two cylinders was modeled, constructed and primarily tested. A flat-plate solar collector was employed as an in-built heat source, thus the system design was based on a temperature difference of 80 °C. The principles of thermodynamics as well as Schmidt theory were adapted to use for modeling the engine. To simulate the system some computer programs were written to analyze the models and the optimized parameters of the engine design were determined. The optimized compression ratio was computed to be 12.5 for solar application according to the mean collector temperature of 100 °C and sink temperature of 20 °C. The corresponding theoretical efficiency of the engine for the mentioned designed parameters was calculated to be 0.012 for zero regenerator efficiency. Proposed engine dimensions are as follows: power piston stroke 0.044 m, power piston diameter 0.13 m, displacer stroke 0.055 m and the displacer diameter 0.41 m. Finally, the engine was tested. The results indicated that at mean collector temperature of 110 °C and sink temperature of 25 °C, the engine produced a maximum brake power of 0.27 W at 14 rpm. The mean engine speed was about 30 rpm at solar radiation intensity of 900 W/m2 and without load. The indicated power was computed to be 1.2 W at 30 rpm.  相似文献   

9.
The feasibility of recovering the waste heat from a small-scale incinerator (designed by Industrial Technology Research Institute) and generating electric power by a linear free-piston Stirling engine is investigated in this study. A heat-transfer model is used to simulate the integration system of the Stirling engine and the incinerator. In this model, the external irreversibility is modeled by the finite temperature difference and by the actual heat transfer area, while the internal irreversibility is considered by an internal heat leakage. At a fixed source temperature and a fixed sink temperature, the optimal engine performance can be obtained by the method of Lagrange multipliers.From the energy and mass balances for the interesting incinerator with the feeding rate at 16 t/d, there is enough otherwise wasted energy for powering the Stirling engine and generate more than 50 kW of electricity.  相似文献   

10.
This study presents test results of a Stirling engine with a lever controlled displacer driving mechanism. Tests were conducted with helium and the working fluid was charged into the engine block. The engine was loaded by means of a prony type micro dynamometer. The heat was supplied by a liquefied petroleum gas (LPG) burner. The engine started to run at 118 °C hot end temperature and the systematic tests of the engine were conducted at 180 °C, 220 °C and 260 °C hot end external surface temperatures. During the test, cold end temperature was kept at 27 °C by means of water circulation. Variation of the shaft torque and power with respect to the charge pressure and hot end temperature were examined. The maximum torque and power were measured as 3.99 Nm and 183 W at 4 bars charge pressure and 260 °C hot end temperature. Maximum power corresponded to 600 rpm speed.  相似文献   

11.
太阳能的利用和斯特林发动机的研发符合目前解决全球能源危机问题的需要。对斯特林热机的发展过程和循环工作原理进行了总结,综述了国内外对于碟式斯特林发电技术的应用现状,归纳了碟式斯特林发电系统中太阳光跟踪控制系统、接收器聚热技术、斯特林发动机功率控制技术和斯特林发动机密封技术等关键技术的研究成果和应用现状,总结并展望了碟式斯特林发电技术的发展重心,为进一步的研究工作提供参考。  相似文献   

12.
The effects of inefficiencies in the compression, expansion and regeneration processes on engine performance have been evaluated theoretically for a Stirling heat engine operating in a closed regenerative thermodynamic cycle. The irreversible cycle has been optimized by using the maximum power density technique. Maximized power and maximized power density are obtained for different nex, τ, αc, αh, ηc, ηex and ηreg values. The maximum efficiencies have been found very close to the values corresponding to the maximum power density conditions but far from the values at maximum power. It has been found that the engines designed by considering the maximum power density have high efficiencies and small sizes under the same prescribed conditions. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

13.
Compared with the traditional engines, the thermo-acoustic engines are relatively new and can act as the linear compressors for refrigerators. Many institutes have shown great interest in this kind of machine for its absence of moving mechanical part. In this paper, the influence of the dimensions of the main parts of the smallscale Stirling thermo-acoustic engine was numerically simulated using a computer code called DeltaEC. The resonator and the resonator cavity were found to be the most convenient and effective in improving the performance of the engine. Based on the numerical simulation, a small-scale Stirling thermo-acoustic engine were constructed and experimentally investigated. Currently, with a resonator length of only 1 m, the working frequency of the engine was decreased to 90 Hz and the onset temperature difference was decreased to 198.2 K.  相似文献   

14.
This paper analyzes the onset characteristics of a miniature thermoacoustic Stirling heat engine using the ther-modynamic analysis method. The governing equations of components are reduced from the basic thermodynamic relations and the linear thermoacoustic theory. By solving the governing equation group numerically, the oscillation frequencies and onset temperatures are obtained. The dependences of the kinds of working gas, the length of resonator tube, the diameter of resonator tube, on the oscillation frequency are calculated. Meanwhile, the influences of hydraulic radius and mean pressure on the onset temperature for different working gas are also presented. The calculation results indicate that there exists an optimal dimensionless hydraulic radius to obtain the lowest onset temperature, whose value lies in the range of 0.30 0.35 for different working gases. Furthermore, the amplitude and phase relationship of pressures and volume flows are analyzed in the time-domain. Some experiments have been performed to validate the calculations. The calculation results agree well with the experimental values. Finally, an error analysis is made, giving the reasons that cause the errors of theoretical calculations.  相似文献   

15.
This paper provides a theoretical investigation on the thermodynamic analysis of a Stirling engine. An isothermal model is developed for an imperfect regeneration Stirling engine with dead volumes of hot space, cold space and regenerator that the regenerator effective temperature is an arithmetic mean of the heater and cooler temperature. Numerical simulation is performed and the effects of the regenerator effectiveness and dead volumes are studied. Results from this study indicate that the engine net work is affected by only the dead volumes while the heat input and engine efficiency are affected by both the regenerator effectiveness and dead volumes. The engine net work decreases with increasing dead volume. The heat input increases with increasing dead volume and decreasing regenerator effectiveness. The engine efficiency decreases with increasing dead volume and decreasing regenerator effectiveness.  相似文献   

16.
This paper provides a theoretical investigation on the optimum absorber temperature of a once-reflecting full conical concentrator for maximizing overall efficiency of a solar-powered low temperature differential Stirling engine. A mathematical model for the overall efficiency of the solar-powered Stirling engine is developed. The optimum absorber temperature for maximum overall efficiency for both limiting conditions of maximum possible engine efficiency and maximum possible engine power output is determined. The results indicated that the optimum absorber temperatures calculated from these two limiting cases are not significantly different. For a given concentrated solar intensity, the maximum overall efficiency characterized by the condition of maximum possible engine power output is very close to that of the real engine of 55% Carnot efficiency, approximately.  相似文献   

17.
This paper provides an experimental investigation on the performance of a low-temperature differential Stirling engine. In this study, a twin power piston, gamma-configuration, low-temperature differential Stirling engine is tested with non-pressurized air by using a solar simulator as a heat source. The engine testing is performed with four different simulated solar intensities. Variations of engine torque, shaft power and brake thermal efficiency with engine speed and engine performance at various heat inputs are presented. The Beale number, obtained from the testing of the engine, is also investigated. The results indicate that at the maximum simulated solar intensity of 7145 W/m2, or heat input of 261.9 J/s, with a heater temperature of 436 K, the engine produces a maximum torque of 0.352 N m at 23.8 rpm, a maximum shaft power of 1.69 W at 52.1 rpm, and a maximum brake thermal efficiency of 0.645% at 52.1 rpm, approximately.  相似文献   

18.
In this paper, the performances of a four power-piston, gamma-configuration, low-temperature differential Stirling engine are presented. The engine is tested with air at atmospheric pressure by using a solar simulator with four different solar intensities as a heat source. Variations in engine torque, shaft power and brake thermal efficiency with engine speed and engine performance at various heat inputs are presented. The Beale number obtained from the testing of the engine is also investigated. The results indicate that at the maximum actual energy input of 1378 W and a heater temperature of 439 K, the engine approximately produces a maximum torque of 2.91 N m, a maximum shaft power of 6.1 W, and a maximum brake thermal efficiency of 0.44% at 20 rpm.  相似文献   

19.
Despite the fast advance of modern technology, poverty is still a serious problem in many developing countries; and more than 1 billion people are having no access to electricity. For these people, even a few Watts of electricity supply for lighting can make a big difference. In this study, a simple, compact, unpressurized, Watt-level low-temperature-differential Stirling engine has been developed aiming to solve the lighting problem in developing countries. The engine in this study is compact. Yet, it is capable of delivering useful electrical power. It is a γ-type Stirling engine with twin power pistons. The diameter of the displacer cylinder is 220 mm, comparable to the size of a cooking pot, and the weight of the engine is under 5 kg. Two energy-conservation/heat-transfer enhancement measures have been incorporated into the engine's design: one is adopting a displacer/regenerator unit, and the other is machining engine-turn slotted grooves on its hot- and cold-end plates. CFD analysis showed that the combination of both measures could effectively improve the performance of the engine. Experiments were conducted to examine the engine's performance. In one experiment, the engine produced 3.7 W of electric power as temperature difference was 100°C, and its power was found to be almost linearly proportional to temperature difference. With a higher temperature difference of 140°C, the electric power reached 5.3 W. Another experiment that operated the engine for a prolonged period has proven the reliability of the engine's performance for long-time use. In practice, the engine can be operated by putting it on a stove table, and the residual heat from cooking is good enough to power the engine to produce usable electricity. Or it can be directly put on a wood fire to generate even higher electrical power.  相似文献   

20.
Because of some advantages such as higher theoretical thermal efficiency, lower pollutant release, working with lower noisy, working with any kind of thermal energy, and having longer life time, Stirling engines receive attentions of academic workers. The development studies related to the drive mechanism as well as the other components of Stirling engine are progressing. In the present study, a beta type Stirling engine with a rhombic‐drive mechanism was manufactured and tested. Tests were performed at hot end temperatures of 600 and 800°C for five different stages of charge pressure ranging from 1 to 5 bar with 1 bar increments. Torque and power characteristics of the engine were deduced. The maximum engine torque and power were obtained as 18 Nm and 1215 W at engine speeds of 612 and 722 rpm, respectively, at 4 bar charging pressure. The cyclic work generations of the engine, which is an important parameter indicating the engine performance, were determined as 19, 27, and 25 J corresponding to 1, 3, and 5 bar charging pressures, respectively. In the experiments, the cylinder pressure variation was also measured at various charging pressures. While the charge pressure increases from 1 to 5 bar, the location of the maximum cylinder pressure ranged from 86° to 74° of crankshaft angle, which may have a bit influence on the engine performance. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号