共查询到19条相似文献,搜索用时 93 毫秒
1.
针对非线性环境中存在的机动目标跟踪问题,对基于贝叶斯估计的粒子滤波器进行研究,为解决混合退火粒子滤波重要密度函数构造的问题,在混合退火粒子滤波的基础上,通过对系统状态和观测粒子方差的研究,提出了非线性环境下动态退火参数粒子滤波的改进算法,在混合退火粒子滤波中引入动态退火参数来构造高效的重要密度函数,提高了混合退火粒子滤波的跟踪精度,应用该滤波方法对机动目标模型进行仿真,并对多种滤波跟踪算法进行性能测试和比较,仿真实验结果表明,在非线性环境下该粒子滤波方法可行有效. 相似文献
2.
3.
4.
为了更鲁棒和快速地进行目标跟踪,在基于粒子滤波的目标跟踪方法的启发下,提出了一种新的基于蒙特卡罗方法的目标跟踪方法。该方法首先运用蒙特卡罗技术对下一帧目标可能出现的位置和尺度进行抽样;然后计算各抽样与参考目标的相似度;最后通过估计目标状态来获得跟踪目标。实验表明,该方法无需目标运动信息,特别适用于目标灵活运动时的跟踪,与现有的算法相比,不仅算法实现简单,同时有较好的鲁棒性和通用性。 相似文献
5.
提出了一种基于产生式与判别式联合模型的视觉目标跟踪算法。首先介绍了一种基于全局颜色特征直方图特征的贝叶斯分类器,检测出若干最有可能属于目标的候选区域,然后利用最佳伙伴相似性度量(Best-Buddies Similarity)得到候选区域与目标模板的相似度,结合概率值与相似度值估计出最优的目标状态。通过划分目标-背景区域模型、目标-干扰区域模型,对可能产生干扰的区域提前进行抑制,降低了长期跟踪可能产生的漂移问题的风险,同时引入了自适应尺度估计机制和在线模型更新策略,以获得更为精准的跟踪结果。在37组具有挑战性的图像序列上与7种优秀的算法对比实验表明,所提出的算法能够有效应对光照变化、遮挡、旋转与尺度变化等多种问题。 相似文献
6.
磁偶极子跟踪的渐进贝叶斯滤波方法 总被引:2,自引:0,他引:2
提出一种新的非线性滤波器应用于磁偶极子目标跟踪问题.建立了跟踪问题的状态空间模型, 在此基础上, 从高斯矩近似误差的角度分析了现有卡尔曼滤波更新在磁偶极子跟踪中的问题.对此, 将贝叶斯更新过程等效为求解连续时间上的渐进贝叶斯问题, 在线性高斯条件下推导了其解析解, 表明渐进贝叶斯更新可等效为定常系统的Kalman-Bucy滤波器; 进一步采用一阶Taylor展开得到非线性近似解表达式, 导出一种渐进贝叶斯滤波器, 从理论上分析了与现有方法的异同.仿真与实测磁目标跟踪试验结果表明, 渐进贝叶斯滤波器具有良好的精度和收敛性, 能够有效抑制磁目标跟踪中由于大初始误差导致的性能下降和滤波发散, 且计算效率与扩展卡尔曼滤波器相当, 适于实际应用. 相似文献
7.
动态背景下基于粒子滤波的运动目标跟踪方法 总被引:2,自引:0,他引:2
在智能视频监控系统中,实现对动态背景下的运动目标准确跟踪是一个难点问题。使用一种基于粒子滤波的方法来对动态背景下的运动目标进行跟踪。该方法基于贝叶斯估计,利用粒子集来表示概率,通过递推的贝叶斯滤波来近似逼近最优化的估计结果。实验结果证明,该方法可准确跟踪动态背景下的运动目标,是一种有效的目标跟踪方法。 相似文献
8.
为了提高目标跟踪过程中粒子滤波结果的精度,将边缘粒子滤波算法应用于目标跟踪。首先将目标运动状态向量划分为线性和非线性两个子向量,然后,采用卡尔曼滤波方法处理线性状态子向量,采用粒子滤波方法处理非线性状态子向量。使用边缘粒子滤波算法和标准粒子滤波算法对目标进行跟踪仿真。仿真结果表明:将边缘粒子滤波算法应用在目标跟踪过程中,能够取得更高的跟踪精度;时间复杂度增加仅6%;在粒子数相对较少的条件下,仍能够保持较好的滤波性能。 相似文献
9.
基于粒子滤波的检测前跟踪算法是当前连续帧图像中弱目标检测与跟踪的研究热点。鉴于已有研究成果中缺少针对粒子滤波检测前跟踪的机理研究,在Bayes推理框架内,分析了检测前跟踪基于累积观测似然比检测弱目标的原理。在理论上推导了Bayes检测前跟踪递归累积观测数据来实现弱目标检测与跟踪的过程,分析验证了采用粒子滤波过程中未归一化粒子权重实现该过程的机理,并基于该机理实现了一种粒子滤波检测前跟踪算法。仿真试验验证了理论分析的正确性和文中粒子滤波检测前跟踪算法的有效性。 相似文献
10.
11.
众多的目标跟踪算法中,Mean—Shift跟踪算法有良好的实时性,对遮挡、目标变形具有一定的适应性,是公认的效果比较好的跟踪方法。但它也存在不足,传统的Mean—Shift算法当背景的直方图分布和目标的直方图分布类似时,或者目标受到光照、阴影等影响,或有干扰物体靠近目标时,在跟踪时很容易发生目标丢失。鉴于此,提出最先使用Kalman滤波器对距离相对比较远的红外弱小目标的大致运动位置做出目标估计,接着使用Mean—Shift跟踪算法在先前目标估计出的区域内做目标的跟踪匹配,并保证精度。实验结果指出,文中提出的算法对于跟踪系统的观察噪声扰动具有较强的鲁棒性。 相似文献
12.
13.
李亚文 《自动化技术与应用》2021,40(3):108-112
针对传统MeanShift目标跟踪算法中运动目标有速度较快或者尺度变换时,而不能准确进行跟踪的问题,引入了DSST运动目标跟踪算法.该算法加入了多尺度估计,并且在样本提取时采用多维特征,可以较好的估计下一帧中运动目标的位置.本文分析了DSST算法的原理,并进行了实验仿真.实验结果表明,DSST的运动目标跟踪算法能较好的... 相似文献
14.
一种优化的运动目标定位与跟踪算法研究 总被引:1,自引:0,他引:1
运动目标检测与跟踪技术可实现对运动目标的检测、定位和跟踪,具有重要的理论意义和实用价值,已经成为各国学者研究的热点方向之一;为了达到更准确和有效的运动目标定位与跟踪的目的,该算法针对目标检测与目标跟踪两个方面,创新点在于目标跟踪;目标检测采用帧间差分法和背景差分法对比择优的方法,目标跟踪采用重心跟踪与卡尔曼滤波跟踪相结合的方法;通过对该种算法进行试验,得出的结果为:该算法的实现效果超越了传统的目标定位与跟踪算法;试验结论:该跟踪算法超越了传统的矩心、重心和卡尔曼滤波跟踪算法的单独跟踪效果,而且运算较快,同时卡尔曼滤波算法的预测与检测性大大降低了错误率,有效地改进了传统目标定位与跟踪算法. 相似文献
15.
针对在舰船目标跟踪过程中由于视场角变化导致的跟踪精度下降的问题,基于全连接孪生神经网络的目标跟踪方法,融合了目标分割策略,提出了基于SiamMask的实时目标跟踪算法。该算法将二元掩模运算作为孪生网络的一个分支,以实现对目标的分割,在获取目标位置信息的同时,获取目标的外观信息,使得该网络的损失函数得到显著增强。由传统的轴对称目标跟踪框,改进为可根据目标形状、外观而自适应调整的可旋转矩形框。将该算法与传统基于孪生网络的跟踪算法SiameseNet,以及基于相关滤波的KCF跟踪算法进行实验仿真测评对比,通过计算各算法的中心误差,结果表明该算法的跟踪精度较两者分别提升了19.5%和24.5%,且运行速度可达30 fps,满足了舰船目标跟踪对于准确性和实时性的要求。 相似文献
16.
本文研究了一类存在量测信息缺失情况的目标跟踪问题,提出了一种高斯渐进框架下的目标跟踪方法以实现移动目标的跟踪.考虑可能存在的传感器故障或失效问题,采用假设检验方式以删选错误的量测信息.针对非线性滤波问题,量测信息的缺失将可能引起线性化误差、数值计算误差的增大,从而破坏目标跟踪估计器的稳定性和收敛性.为此,对渐进无迹卡尔曼滤波(Progressive unscented Kalman filter,PUKF)方法进行改进,使其更好地处理量测信息缺失引起的线性化误差、数值计算误差增大的问题.另外,通过对改进PUKF(Modified PUKF,MPUKF)方法的理论分析,证明其可保证渐进过程中的状态估计误差有界.最后,通过一个目标跟踪仿真实例表明,MPUKF方法比传统的IUKF方法和PUKF方法具有更高的跟踪精度. 相似文献
17.
18.