首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper investigated radiative heat transfer and thermal characteristics of Fe-based oxides coated SiC and Alumina reticulated porous ceramic structures as integrated solar thermochemical reactor. High-flux solar radiation absorption and axial temperature distribution in the ceramic foams reactor were analyzed by adopting surface-to-surface radiation model coupled to the P1 approximation for radiation heat transfer. The radiative heat transfer and thermal characteristics of different foam-type RPC structures, including SiC, CeO2, FeAl2O4, NiFeAlO4, Fe3O4/SiC, and NiFe2O4/SiC were evaluated. The mass flow rate and foam structural parameters, including the permeability, pore mean cell size, and extinction coefficients have significantly affected the axial temperature distribution, pressure drop, heat transfer, and fluid flow. Integrated porous structure to the solar receiver could maximize the incorporation of redox powder in the reacting medium, lower the pressure drop, and enhance the thermal performance of the thermochemical reacting system. SiC structure was the candidate materials in the case where more heat flux and high axial temperature distribution is needed. However, Fe-based oxide coated Al2O3 structure could be considered regarding the heat transfer enhancement along with the catalyst activity of oxygen carriers for solar thermochemical reacting system performance.  相似文献   

2.
针对建造对太阳能烟囱发电的局限性,大气涡旋引擎发电内部形成的旋风柱可代替物理的烟囱,结合数学方程体系建立的涡旋引擎模型,借助计算流体力学软件CFX可以很好地模拟生成龙卷风风柱,同时运用正交实验法分析影响涡旋引擎发电效率的因素,结果表明,各影响因素的主次顺序为叶片安装角度、涡旋发生室出口断面直径与涡旋室断面直径比、涡旋发生室高度.  相似文献   

3.
采用"二步法"制备了铜-水基纳米流体,并对纳米流体进行了透射电镜分析。对不同质量浓度下(0.1%、0.15%、0.2%)铜-水基纳米流体的环路热管太阳能热水系统进行了实验研究,分析了环路热管太阳能热水系统中的水箱水温变化、瞬时光热效率,并与去离子水系统进行了对比分析。实验结果表明,纳米铜颗粒的加入增加了液体的导热系数,铜-水基纳米流体更适合作为太阳能重力环路热管热水系统的相变传热工质,且存在一个最佳的纳米流体工质质量浓度(最佳质量浓度为0.15%),可使得环路热管热水系统的传热性能最佳。  相似文献   

4.
溴化锂吸收式制冷系统变频控制及其稳定性研究   总被引:1,自引:0,他引:1  
将变频控制和PLC应用于溴化锂吸收式制冷机组(简称溴冷机),不仅可以提高溴冷机的自动控制程度和调节性能,而且可以更好地改善溴冷机运行的稳定性.应用变频器和PLC对原有的溴冷机试验台改造,形成闭环变频控制系统,从而实现了控制机组冷却塔风机转速和增压器转速,进而实现冷却水温度和溴冷机冷负荷的控制调节.在室外气温温度变化和溴冷机冷负荷改变的试验条件下,溴冷机冷却水的波动性降低,系统运行的稳定性得到了提高,同时使机组制冷量的变化与冷却塔的冷却能力有机地匹配,取得一定的节能效果.  相似文献   

5.
人工环境实验室对温度的控制精度低于工艺性环境要求,但冬季若采用分体式空调制热模式控制,实验室温度的波动范围过大,影响采集实验数据的准确性。提出冬季采用空调制冷模式联合电取暖器稳定人工环境实验室内温度的新方法,在背景实验中将新方法和传统空调制热温度控制方法进行对比,结果表明:采用新方法能大幅度提高人工环境实验房间温度的稳定性。为对新方法中空调的设定制冷温度与电取暖器功率匹配问题做进一步研究而进行探究试验,实验结果表明:空调制冷量Q1、测试房间热负荷Q2、电取暖器功率Q3和测试房间其他设备功率Q4存在匹配关系,当空调设定温度相同时,|Q1+Q2-Q3-Q4|值越小,人工环境实验室内温度波动频率越稳定,振幅越小。  相似文献   

6.
采用计算流体力学方法研究比转速为76的定型产品32WB8-12型电机直联旋流泵输送水和不同黏度黏油时的水力性能和内部流动,分析液体黏度对性能曲线、泵水力损失、泵腔内部液体平均旋转角速度的变化,给出3个工况下流量、扬程、效率和叶轮圆盘摩擦损失修正系数与叶轮雷诺数的定量关系式,并与离心泵输送黏油试验数据和现有修正系数换算方法进行详细对比。结果表明:与离心泵相比,旋流泵的叶轮圆盘摩擦损失占轴功率的百分比最多为5%,属低叶轮圆盘摩擦损失泵;液体黏度对流量和效率修正系数影响较小,对扬程修正修正系数影响较大;当叶轮雷诺数不低于1×104时,旋流泵可维持较佳水力性能,适合输送黏度较高的液体;泵腔内存在环流涡,其位置和大小、液体平均角速度大小同黏度有关。  相似文献   

7.
为探究硫化氢(H_2S)在常压范围内对甲烷(CH_4)燃烧特性的影响,采用化学动力学软件CHEMKIN-PRO中的0-D和PFR反应器研究H_2S浓度、过量空气系数、压力和温度对CH_4点火延迟及还原NO的影响,并通过敏感性和生成率分析揭示其化学动力学机理.模拟结果表明:H_2S的存在促进活性基团(H,O,OH,HO_2,HO_2和H_2O_2)的生成速率,从而缩短预混气点火延迟时间,且在低温下的影响作用更加明显;预混气点火延迟时间随着过量空气系数的增大而减小;压力增加亦有利于缩短点火延迟时间. H_2S可降低CH_4/H_2S还原NO的温度,主要由于H_2S降低CH_4的反应温度,使还原性基团CH_i在较低温度下产生;但同时H_2S的存在,在一定程度上降低NO的还原效率,且在贫氧气氛中的影响更为显著.  相似文献   

8.
Raw Mg,Si powder were used to fabricate Mg2Si bulk thermoelectric generator by spark plasma sintering (SPS).The optimum parameters to synthesize pure Mg2Si powder were found to be 823 K,0 MPa,10 min with excessive content of 10wt% Mg from the stoichiometric Mg2Si.Mg2Si bulk was synthesized and densified simultaneously at low temperature (823 K) and high pressure (higher than 100 MPa) from the raw powder,but Mg,Si could not react completely,and the sample was not very dense with some microcracks on the surface.Then,Mg,Si powder reacted at 823 K,0 MPa,10 min in SPS chamber to form Mg2Si green compact,again sintered by SPS at 1023 K,20 MPa,5 min.The fabricated sample only contained Mg2Si phase with fully relative density.  相似文献   

9.
Fluorine doped tin oxide SnO2:F thin films were prepared by the spray pyrolysis (SP) technique on glass substrates by using SnCl2·2H2O as a precursor and NH4F and HF as doping compounds. A comparison between the properties of the films obtained by using the two doping compounds was performed by using I–V characteristics in the dark at room temperature, AC measurements, and transmittance. It is found that the films prepared by using HF have smaller resistivity, lower impedance and they are less capacitive than films prepared by using NH4F. In addition, these films have higher transmittance, higher optical bandgap energy and narrower Urbach tail width. These results are interesting for the use of SnO2:F as forecontact in CdS/CdTe solar cells.  相似文献   

10.
PTA sol was prepared using titanium tetrachloride (TiCl4), hydrogen peroxide (H2O2) and ammonia (NH3·H2O), and then stable anatase-TiO2 hydrosol was synthesized by refluxing the PTA sol at 100 °C. It was found that TiO2 hydrosol can efficiently photo-degrade methyl orange (MO) under UV-vis light irradiation. Photocatalytic reactions at the temperature of 38 to 100 °C all followed pseudo-first-order rate law, and the temperature had a great effect on the reaction rate. The rate constants increased by about 6 times from 3.52×10?4 to 2.17×10?3 min?1 when the temperature was adjusted from 38 to 100 °C. Consequently, this photocatalytic course can be accelerated by using the infrared light of solar energy to increase the temperature of the photo-catalytic reaction, it should be a potential way to make full use of solar light in photocatalysis in practice.  相似文献   

11.
This study investigates the effects of using fuels with low heating values on the performance of an annular micro gas turbine (MGT) experimentally and numerically. The MGT used in this study is MW-54, whose original fuel is liquid (Jet A1). Its fuel supply system is re-designed to use biogas fuel with low heating value (LHV). The purpose is to reduce the size of a biogas distributed power supply system and to enhance its popularization. This study assesses the practicability of using fuels with LHVs by using various mixing ratios of methane (CH4) and carbon dioxide (CO2). Prior to experiments, the corresponding simulations, aided by the commercial code CFD-ACE+, were carried out to investigate the cooling effect in a perforated combustion chamber and combustion behavior in an annular MGT when LHV gas was used. The main purposes are to confirm that there are no hot spots occurring in the liners and the exhaust temperatures of combustor are lower than 700°C when MGT is operated under different conditions. In experiments, fuel pressure and mass flow rate, turbine rotational speed, generator power output, and temperature distribution were measured to analyze MGT performance. Experimental results indicate that the presented MGT system operates successfully under each tested condition when the minimum heating value of the simulated fuel is approximately 50% of pure methane. The power output is around 170 W at 85000 r/min as 90% CH4 with 10% CO2 is used and 70 W at 60000 r/min as 70% CH4 with 30% CO2 is used. When a critical limit of 60% CH4 is used, the power output is extremely low. Furthermore, the best theoretical Brayton cycle efficiency for such MGT is calculated as 23% according to the experimental data while LHV fuel is used. Finally, the numerical results and experiment results reveal that MGT performance can be improved further and the possible solutions for performance improvement are suggested for the future studies.  相似文献   

12.
In order to precisely retrieve the atmospheric CO2 , a retrieval method based on both near infrared (NIR) and thermal infrared (TIR) is established firstly. Then a look-up-table (LUT) based fast line-by-line radiative transfer model (RTM) was integrated into the retrieval procedure to accelerate radiative transfer calculations. The LUT stores gas absorption cross-sections as a function of temperature, pressure and wavenumber. It could greatly reduce calculating time in radiative transfer compared to direct line-by-line method. Then retrieval was simulated using NIR, TIR and both bands. The retrieved CO2 profiles suggest joint approach could reconstruct CO2 profile better than those using NIR or TIR alone. Joint retrieval using both bands simultaneously could provide better constrain to CO2 vertical distribution in the whole troposphere.  相似文献   

13.
In typical small engines, the cooling air for high pressure turbine(HPT) in a gas turbine engine is commonly bled off from the main flow at the tip of the centrifugal impeller. The pressurized air flow is drawn radially inwards through the impeller rear cavity. The centripetal air flow creates a strong vortex because of high inlet tangential velocity, which results in significant pressure losses. This not only restricts the mass flow rate, but also reduces the cooling air pressure for down-stream hot components. The present study is devoted to the numerical modeling of flow in an impeller rear cavity. The simulations are carried out with axisymmetric and 3-D sector models for various inlet swirl ratio β_0(0–0.6), turbulent flow parameter lT(0.028–0.280) with and without baffle. The baffle is a thin plate attached to the stationary wall of the cavity, and is proved to be useful in reducing the pressure loss of centripetal flow in the impeller rear cavity in the current paper. Further flow details in impeller rear cavity with and without baffle are displayed using CFD techniques. The CFD results show that for any specified geometry, the outlet pressure coefficient of impeller rear cavity with or without baffle depends only on the inlet swirl ratio and turbulent flow parameter. Meanwhile, the outlet pressure coefficient of the cavity with baffle is indeed smaller than that of cavity without baffle, especially for the cases with high inlet swirl ratio. The suppression of the effect of centrifugal pumping and the mixing beween the main air which is downstream of the baffle and the recirculating flow of the vortex in the stationary cavity, which are caused by the use of baffle, are the underlying reasons that lead to the reduction of outlet pressure loss.  相似文献   

14.
高压涡流管是撬装化天然气液化的关键设备.由于管内高压引起的超音速强旋转流与传统涡流管有本质的区别.由于强大的离心力,目前对三维强旋转湍流流动的测量与真实情况还有很大差异.利用数值计算方法,研究了在高压环境中涡流管内流场和温度场结构特性,提出利用冷热端压差配合特殊设计的喷嘴,有利于形成超音速流动,并在喷管段形成低温区域.控制高压涡流管的热端背压,有利于获得更高的制冷效率.  相似文献   

15.
通过对带温压补偿的集成化涡街传感器构造原理、性能特点等方面的分析,阐述了一种流量计量新产品的构造思路,在涡街传感器中集成压力和温度传感器,让它们三者合为一体。这样,即降低了涡街的误差,也减少了分离式补偿的复杂性。  相似文献   

16.
In order to research ammonia escape in CO2 absorption by ammonia scrubbing, ammonia escape was studied in CO2 absorption process using the bubbling reactor in different conditions as gas flow rate, CO2 ratio, absorbent temperature and ammonia concentration and quantity of escaped ammonia was measured by chemical titration. The results indicated that, the amount of ammonia escape can be around 20% of original amount in 90 min and the escaped amount will increase with the rise of gas flow rate, absorbent temperature, concentration of ammonia while decrease as CO2 ratio goes up. Through the analysis of the law of ammonia escape, at the same time, combined with ammonia escape and the influence of the relationship between the CO2 absorption efficiency, reducing ammonia escape working condition parameter optimization is given.  相似文献   

17.
分析了现有各种地基处理方法的优缺点,首次提出并经室内试验验证了涡压挤扩机理。使用自行设计制作的涡压挤扩环境箱和钢套管实施粘性土和砂性土的涡压挤扩试验,设置于钢套管内的涡压叶片可顺利地将其内部的流态混凝土挤扩到周围的土体中。定义了扩径比,测得不同扭矩条件下砂性土和粘性土的扩径比,并得到其极限扭矩。对涡压过程中混凝土可能出现的流动形态进行分析,建立混凝土流动分析模型,得到流态混凝土在涡压腔内的动力学模型。结果表明,采用涡压挤扩方法处理地基在理论上是可行的,具有较强的适用性,涡压挤扩方法将为地基处理行业注入新的活力。  相似文献   

18.
为了合理利用太阳能,增强制冷系统的季节适应性,提出一种中温太阳能驱动的氨水吸收式制冷系统。以抛物面槽式太阳能集热器(parabolic trough solar collector, PTSC)驱动的氨水单效吸收式制冷系统为对象,根据热力学定律和能量平衡方程,在工程求解器(engineering equation solver, EES)下,分别建立太阳能集热器模型和制冷系统模型,并对系统的关键参数进行计算。从制冷量、精馏热和系统能效比(COP)三方面分析了系统高压、系统低压、蒸发器出口温度和精馏器出口质量分数对系统的影响。结果表明:制冷量随系统低压的升高而降低;精馏热及COP随系统低压的升高而增加;蒸发器的出口温度升高时,制冷量和COP均有增加;当精馏器出口氨的质量分数为0.977~0.999, COP在氨水质量分数为0.992时出现最大值。研究结果为太阳能驱动单级吸收式制冷循环的可行性提供了理论依据。  相似文献   

19.
纵向涡是一种新型的传热强化技术 ,其传热性能好 ,安装方便 ,使用可靠 .以数值计算方法分析了在常壁温条件下纵向涡对换热器的传热性能以及流动阻力的影响 .研究发现 ,纵向涡发生器的传热强化效果与翅前端距有很大的关系 ,并存在一个最佳的翅前端距 .  相似文献   

20.
利用三维数值模拟,分析了圆管内添加翼片后流体的流动结构和对流传热特性。模拟中,翼片与壁面呈45°倾斜放置,选取包含1个翼片的1/6通道进行研究。结果表明,翼片可在下游诱导产生2个旋转方向相反的纵向涡,形成对称的涡偶,涡偶外侧为背壁流,内侧为向壁流。纵向涡结构提高了流体在径向上的速度波动,在翼片下游靠近管壁处,最大速度可达到主流平均速度的80%,增强了对速度边界层的扰动。流场的改善使通道内的温度场分布更加均匀,与光滑通道相比,壁面附近的温度梯度可提高接近1个数量级。流体对壁面的冲刷作用使对流传热得到强化,相对于光滑通道,壁面局部Nu数可提高近50倍。纵向涡对通道内流体的强化传热作用随Re的增加而显著提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号