首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 116 毫秒
1.
Metabolism of erucic acid in adipocytes isolated from rat epididymal fat   总被引:1,自引:0,他引:1  
The metabolism of [14-14C]erucic acid and [U-14C]palmitic acid has been investigated in adipocytes isolated from rat epididymal fat. The rate of acylation of [14C]erucic acid in cellular lipids and oxidation to CO2 and acid-soluble activity was ca. 1/3 of the rate with [14C]palmitic acid as substrate. A maximal incorporation of fatty acids in triacylglycerol was found at a fatty acid concentration of 0.8 mM in the medium, both with [14C]erucic acid and [14C]palmitic acid as substrate. Glucose added to the medium increased the esterification and decreased the oxidation of both fatty acids. No significant chain-shortening of [14C]erucic acid to shorter monoenes was identified in the fat cells. Increasing concentrations of unlabeled palmitic acid in the incubation medium markedly inhibited the esterification of [14C]erucic acid, whereas unlabeled erucic acid had little effect on the rate of esterification of [14C]palmitic acid.  相似文献   

2.
C. G. Rogers 《Lipids》1977,12(12):1043-1049
Erucic acid (Δ13-docosenoic acid) was added to fetal calf serum, then fed to rat liver epithelial cells in culture, and uptake measured at intervals over 24 hr. During the first 6 hr. of incubation, uptake of the docosenoic acid was 21 nmoles/hr/mg protein in 7-day cells, and 15 mmoles/hr/mg protein in 14-day cells. Of14C-labeled erucic acid taken up by the cells in 24 hr, radioactivity measurements showed 60% of the total lipid14C activity derived from [1-14C] 22∶1 in neutral lipid (NL) and 40% in phospholipid (PL); whereas 55% of lipid14C activity was in NL and 45% in PL when the substrate was [14-14C] 22∶1. Within the NL fraction, 75% of14C activity derived from [1-14C] 22∶1 was in triglyceride (TG) and 11% in cholesterol (CHL), while 79% was in TG and 6.5% in CHL when the substrate was [14-14C] 22∶1. Triglycerides and cholesteryl esters accumulated in the cells during incubation with erucic acid. Among phospholipids separated by thin layer chromatography, 75% of14C activity was in lecithin (PC), 10% in phosphatidylethanolamine (PE), 5% in sphingomyelin (SPH), and 1% or less in cardiolipin (DPG). The highest specific activity (SA) was in PC, followed by SPH and PE. Incubation with erucic acid altered fatty acid composition of PC, PE, and SPH, although amounts of phospholipids were unaffected. Gas liquid chromatography analyses detected 18% erucic acid in PC, 2% in PE, and 4–5% in SPH.  相似文献   

3.
Two groups of rats were fed diets containing 20% by weight of either partially hydrogenated marine oil supplemented with sunflower seed oil (PHMO) or palm oil (PO) for 8 wk. Using a liver perfusion system, the effect of dietary long chain monoenoic fatty acids on the uptake and metabolism of [14-14C]erucic acid was studied. The perfusion times were 15 and 60 min, respectively. The two groups showed equal ability for erucic acid uptake in the liver but differed in the channeling of the fatty acids into various metabolic pathways. A higher metabolic turnover of 22∶1 in the PHMO livers relative to the PO livers was demonstrated by an increased recovery of total [14C]labeling in the triglyceride (TG) and phospholipid (PL) fractions, already evident after 15 min of perfusion. The chainshortening capacity was highest in the PHMO group, reflected by a higher [14C]18∶1 incorporation in both TG and PL, and increasing from 15 to 60 min of perfusion. The amount of [14C]18∶1 found in PL and TG after 60 min of perfusion of livers from rats fed PO corresponded to that shown for the PHMO group after 15 min. The PL demonstrated a discrimination against 22∶1 compared to TG, and, when available, 18∶1 was highly preferred for PL-synthesis. The total fatty acid distribution in the TG, as determined by gas liquid chromatography (GLC), reflected the composition of the dietary fats. In the total liver PL, 22∶1 and 20∶1 were present in negligible amounts, although the PHMO diet contained 12–13% of both 22∶1 and 20∶1. In the free fatty acid fraction (FFA), the major part of the radioactivity (≈80%) was [14-14C]erucic acid, and only small amounts of [14C]18∶1(<2%) were presents, even after 60 min of perfusion. The shortened-chain 18∶1 was readily removed from the FFA pool and preferentially used for lipid esterification.  相似文献   

4.
5.
[1-14C] Phytanic acid has been prepared in good yield from the unlabeled acid. Pristanyl iodide, prepared from the latter by a modified Hunsdieker reaction, is converted to the corresponding [14C]-nitrile by reaction with sodium [14C] cyanide in dimethyl sulphoxide; hydrolysis of the [14C] nitrile yields [1-14C]phytanic acid. The labeled acid should prove to be a useful substrate for the diagnosis of Refsum's disease.  相似文献   

6.
Pierre Clouet  Jean Bezard 《Lipids》1979,14(3):268-273
Microsomes and mitochondria of liver, kidneys, and heart were incubated with [14-14C]erucic acid in three assay media: one favorable for chain elongation (NADPH+KCN), another favorable for β-oxidation and the last one for shortening (NADP+KCN). Elongating reactions occurred mainly in microsomes, those of kidneys being very active; the mitochondria also showed some activity, heart mitochondria being, however, more active than the microsomes, when considering the amount of erucic acid activated. In the medium for β-oxidation, practically no shortened fatty acids were found. On the contrary, when β-oxidation was inhibited, and in the presence of NADP, the formation of shorter monoenes, probably in the outer membrane of the mitochondria, was observed, namely eicosenoic acid in high amount, oleic acid and hexadecenoic acid. Mitochondria from liver were very active as were those of heart, when compared with the quantity of activated erucic acid. In heart, the mitochondria shortened erucic acid into oleic acid and hexadecenoic acid, which were then probably used as energy substrates. With carnitine and without NADP, shortened fatty acids were formed in the mitochondria of liver, probably by the first reactions of β-oxidation. In this case, the proportions of oleic acid and hexadecenoic acid were higher than with NADP alone. In the presence of carnitine and NADP, the level of the chain-shortening reaction did not differ from that observed with NADP alone. It appears, therefore, that the activated erucic acid is mainly directed towards shortening reactions and not towards transfer reactions across the mitochondrial membranes.  相似文献   

7.
The biosynthesis of cyclopropane and cyclopropene fatty acids has been investigated in immature seeds, leaves and callus tissue cultures of several species of Malvaceae. Chemical characterization of labeled cyclopropane and cyclopropene fatty acids obtained from incubations withl-[14CH3] methionine confirmed that the ring methylene group was derived from the methyl group of methionine. The variation with time in the distribution of radioactivity in the products of incubations with [14CH3] methionine and [2-14C] acetate suggested that the pathway involved initial formation of dihydrosterculic acid from oleic acid with subsequent desaturation to sterculic acid and α-oxidation to malvalic and dihydromalvalic acids. Direct evidence in favor of this pathway was provided by the conversion of [1-14C] oleic acid to dihydrosterculic and sterculic acids and by the desaturation of [1-14C] dihydrosterculic acid to sterculic acid, the first time that these processes have been demonstrated in higher plants. No conversion of [1-14C] stearolic acid to sterculic acid could be obtained under the same conditions. The presence of an active fatty acid α-oxidation system was demonstrated in the callus cultures.  相似文献   

8.
When 5×106 hepatocytes were incubated for 40 min with from 0.15 to 0.60 mM [1-14C]linoleic acid, [1-14C]6,9,12-octadecatrienoic acid, or [1-14C]8,11,14-eicosatrienoic acid, there was a concentration-dependent acylation of radioactive metabolites into both triglycerides and phospholipids. When the concentration of either [1-14C]linoleic acid or [1-14C]8,11,14-eicosatrienoic acid exceeded 0.3 mM, there was no further increase in the metabolism of either fatty acid to other (n−6) metabolites. When the concentration of [1-14C]6,9,12-octadecatrienoic acid exceeded 0.15 mM, there was an apparent substrate-induced inhibition in its metabolism to 8,11,14-eicosatrienoic acid. With all three substrates (0.3 mM), there was time-dependent metabolism to other (n−6) acids. Cells then were incubated simultaneously with 0.3 mM [1-14C]linoleic acid along with 0.15 to 0.45 mM 6,9,12-octadecatrienoic acid or 8,11,14-eicosatrienoic acid. These exogenous nonradioactive (n−6) acids suppressed but did not abolish the conversion of [1-14C]linoleate to radioactive arachidonate. These findings suggest that some linoleate is converted to arachidonate without intracellular mixing of 6,8,12-octadecatrienoic or 8,11,14-eicosatrienoic acids. This hypothesis is supported by the finding that exogenous linoleate did not markedly affect the metabolism of [1-14C]6,9,12-octadecatrienoic or [1-14C]8,11,14-eicosatrienoic acid by microsomal chain elongating or desaturating enzymes.  相似文献   

9.
The mass spectrometry of iso and anteiso monoenoic fatty acids   总被引:5,自引:0,他引:5  
The normal, iso, and anteiso Δ8- and Δ9-17:1 fatty acid methyl esters were synthesized and their electron impact-induced fragmentation was studied by mass spectrometry. The mass spectra of the preterminal branched monoenoic fatty acid methyl esters present characteristic fragment ions, now understood to be indicative of the position of the methyl group. These fragment ions are in the iso compound m/e 227 [M-55]+, m/e 195 [M-87]+, and m/e 177 [M-105]+, while in the anteiso compound these fragments are shifted by 14 mass units to m/e 213, m/e 181, and m/e 163. The 15-D-iso Δ8- and Δ9-17:1 methyl esters were synthesized because the characteristic fragment ions in the methyl branched compounds indicated a key role of the tertiary hydrogen atom in the rearrangement process. A fragmentation mechanism consisting of a double bond migration triggered by the tertiary hydrogen and an allylic cleavage assuming a displacement mechanism is proposed.  相似文献   

10.
Mosley EE  McGuire MA 《Lipids》2007,42(10):939-945
There is limited methodology available to quantitatively assess the activity of the Δ9-desaturase enzyme in vivo without chemically inhibiting the enzyme or using radioactively labeled substrates. The objective of these experiments was to develop methodology to determine the incorporation and desaturation of 13C-labeled fatty acids into milk lipids. In a preliminary experiment, 3.7 g [1-13C]myristic acid ([1-13C]14:0), 19.5 g [1-13C]palmitic acid ([1-13C]16:0), 20.0 g [1-13C]stearic acid ([1-13C]18:0) were combined and infused into the duodenum of a cow over 24 h. In a following experiment, 5.0 g [1-13C]14:0, 40.0 g [1-13C]16:0, and 50.0 g [1-13C]18:0 were infused into the abomasums of separate cows as a bolus over 20 min or continuously over 24 h. Milk fat was extracted using chloroform:methanol. Fatty acids were methylated, and fatty acid methyl esters (FAME) were converted to dimethyl disulfide derivatives (DMDS). The FAME and DMDS were analyzed by gas chromatography mass spectrometry. In the preliminary experiment, 13C enrichment in 14:0 but not 16:0 or 18:0 was observed. When dosage amounts were increased in the following experiment, peak enrichments from the bolus infusion were observed at 8 h. Enrichments for continuous infusion peaked at 16 h for 14:0 and 18:0, and at 24 h for 16:0. The Δ9-desaturase products of these fatty acids were estimated to be 90% of cis-9 14:1, 50% of cis-9 16:1, and 59% of cis-9 18:1. This study demonstrates that 13C-labeled fatty acids may be utilized in vivo to measure the activity of the Δ9-desaturase enzyme.  相似文献   

11.
The differential uptake and targeting of intravenously infused [1-14C]palmitic ([1-14C] 16∶0) and [1-14C]arachidonic ([1-14C]20∶4n−6) acids into heart lipid pools were determined in awake adult male rats. The fatty acid tracers were infused (170 μCi/kg) through the femoral vein at a constant rate of 0.4 mL/min over 5 min. At 10 min postinfusion, the rats were killed using pentobarbital. The hearts were rapidly removed, washed free of exogenous blood, and frozen in dry ice. Arterial blood was withdrawn over the course of the experiment to determine plasma radiotracer levels. Lipids were extracted from heart tissue using a two-phase system, and total radioactivity was measured in the nonvolatile aqueous and organic fractions. Both fatty acid tracers had similar plasma curves, but were differentially distributed into heart lipid compartments. The extent of [1-14C]20∶4n−6 esterification into heart phospholipids, primarily choline glycerophospholipids, was elevated 3.5-fold compared to [1-14C]16∶0. The unilateral incorporation coefficient, k *, which represents tissue radioactivity divided by the integrated plasma radioactivity for heart phospholipid, was sevenfold greater for [1-14C]20∶4n−6 than for [1-14C]16∶0. In contrast, [1-14C]16∶0 was esterified mainly into heart neutral lipids, primarily triacylglycerols (TG), and was also found in the nonvolatile aqueous compartment. Thus, in rat heart, [1-14C]20∶4n−6 was primarily targeted for esterification into phospholipids, while [1-14C]16∶0 was targeted for esterification into TG or metabolized into nonvolatile aqueous components.  相似文献   

12.
Cats fed a diet containing linoleate as the only polyunsaturated fatty acid showed extremely low levels of arachidonate in the plasma lipids, as well as an increase in linoleate, eicosadienoate and an unknown fatty acid. Administration of [1-14C] linoleic acid and [2-14C] eicosa-8,11,14-trienoic acid to cats showed that in the liver there was no conversion of the [1-14C] 18∶2 to arachidonate, whereas there was significant metabolism of [2-14C] 20∶3 to arachidonate. It was found when methyl-γ-linolenate was fed to cats that the level of 20∶3ω6 and 20∶4ω6 in the erythrocytes increased significantly. These results show that there is no significant Δ6 desaturase activity in the cat, whereas chain elongation and Δ5 desaturase enzymes are operative. The unknown fatty acid was isolated from the liver lipids and shown to be a 20-carbon fatty acid with 3 double bonds and which by gas liquid chromatography could be separated from 20∶3ω9 and 20∶3ω6. The presence of the Δ5-desaturase activity and the results of the ozonolysis studies indicated that this unknown fatty acid was eicosa-5,11,14-trienoic acid.  相似文献   

13.
To develop a synthesis of tritiated cyclopropene fatty acids (CPFA), compounds that should prove useful for affinity labeling of desaturases in insect pheromone biosynthetic studies, a series of novel, selectively deuterated CPFA analogues was prepared and characterized. In methyl [16-2H]12,13-methylene-12-hexadecenoate, the incorporation of deuterium was achieved by treatment of the corresponding ω-chloro derivative with sodium borodeuteride in dimethylsulfoxide at 70°C for 24 h (67% yield) following conventional procedures. Alkylation of the tetrahydropyranyl derivative of 13-tridecynol in the presence of lithium diisopropylamide in tetrahydrofuran at −20°C with 1-chloro-3-iodopropane in hexamethylphosphoramide, followed by Jones oxidation of the crude product, yielded 16-chloro-12-hexadecynoic acid (54%), which was esterified to the corresponding methyl ester by treatment with potassium carbonate and methyl iodide in dimethylformamide. Treatment of this acetylenic ester with ethyldiazoacetate in the presence of activated copper-bronze as catalyst followed by hydrolysis in KOH solution at room temperature yielded 16-chloro-12,13-(carboxymethylene)-12-hexadecenoic acid. This diacid was treated with excess oxalyl chloride to give the corresponding diacyl chloride, which was decarbonylated in a diethyl ether solution with zinc chloride, and the cyclopropenium ions thus formed were added at −40°C to a methanolic sodium hydroxide solution of sodium borohydride to give methyl 16-chloro-12,13-methylene-12-hexadecenoate. Analogous procedures were followed to prepare methyl [17-2H]10,11-methylene-10-hexadecenoate, methyl [17-2H]11,12-methylene-11-hexadecenoate and methyl [17-2H]12,13-methylene-12-hexadecenoate from the corresponding diacids using sodium borodeuteride in the reduction of the cyclopropenium ions. Alternatively, methyl [2,2,3,3-2H4]hexadecynoate, prepared by reaction of methyl 2,11-hexadecadiynoate with magnesium in deuterated methanol at room temperature, was submitted to the above cyclopropenylation and reductive decarbonylation sequence to give methyl [2,2,3,3,17-2H5]-11,12-methylene-11-hexadecenoate. In summary, complementary methods for the selective incorporation of one to five deuterium atoms into cyclopropene fatty acids, at different sites, in moderate to high yields have been developed. The methods should easily be applicable to the preparation of the corresponding tritiated analogues.  相似文献   

14.
The effects of trifluoperazine (TFP) on [1-14C]fatty acid incorporation into the lipids ofMortierella ramanniana var.angulispora were studied. TFP decreased [1-14C]-fatty acid incorporation into phosphatidylcholine, phosphatidylethanolamine and triacylglycerol, but greatly increased14C-labeling in phosphatidic acid. These changes in [1-14C]fatty acid incorporation induced by TFP were accompanied by a decrease in desaturation of some [1-14C]fatty acids taken up by the fungal cells. When [1-14C]lioleic acid (LA) was incubated with the fungal cells, total γ-linolenic acid (GLA) formation from incorporated [1-14C]LA decreased, but the14C-labeled GLA conent in individual lipid classes was essentially unchanged. This suggests that the site of the TFP effect on GLA formation from [1-14C]LA taken up from the medium is not the desaturase acting on LA linked to complex lipids. On the other hand, GLA formation from [1-14C]oleic acid was much less susceptile to TFP, which suggests that in this fungus Δ6 desaturation to GLA has at least two different pathways with different degrees of susceptibility to TFP.  相似文献   

15.
The incorporation of [1-14C]18∶3n−3, (LNA) and [1-14C]-22∶6n−3 (DHA), and the metabolismvia the desaturase/elongase pathways of [1-14C]LNA, and [1-14C]20∶5n−3 (EPA) were studied in brain cells from newly-weaned (1-month-old) and 4-month-old turbot. The rank order of the extent of net incorporation of both LNA and DHA into glycerophospholipids was total diradyl glycerophosphocholines (CPL)> total diradyl glycerophosphoethanolamines (EPL)> phosphatidylserine (PS) and phosphatidylinositol (PI) and was independent of the polyunsaturated fatty acid added, the age of the fish and the time of incubation. However, the rate of incorporation of LNA into total lipid, CPL, EPL and PS was significantly greater than the rate of incorporation of DHA, and there was a significantly greater amount of DHA incorporated into EPL than LNA. There was no significant difference between the amounts of LNA and DHA incorporated into total lipid, CPL, PS and PI. Therefore, little preferential uptake and incorporation of DHA into brain cells was apparent. In 24-h incubations, on average 1.1% and 8.5% of radioactivity from [1-14C]LNA and [1-14C]EPA, respectively, were recovered in the DHA fraction. Therefore, LNA cannot contribute significantly to brain DHA levels in the turbot but EPA can. There were no significant differences between the amounts of radioactivity from either [1-14C]LNA or [1-14C]EPA recovered in the individual products/intermediates of the desaturase pathways in brain cells from 30-day-old and 120-day-old turbot.  相似文献   

16.
Trans octadecenoic acid methyl ester isomers were obtained from a partially hydrognated soybean oil and isolated by silver-ion high-performance liquid chromatography. Recently, the double-bond positions for nine individual trans octadecenoic acid positional isomers (Δ8 through Δ16) were confirmed by gas chromatography-electron ionization mass spectrometry after derivatization to 2-alkenyl-4,4-dimethyloxazoline. In this communication, the presence of two additional trans-18:1 fatty acid methyl ester positional isomers (Δ6 and Δ7) in the same mixture is confirmed by 13C nuclear magnetic resonance spectroscopy. The identity of the Δ5-trans-18:1 fatty acid methyl ester positional isomer is inferred. Summer student researcher.  相似文献   

17.
The metabolism of [14-14C] erucic acid was studied in perfused livers from rats fed on diets containing partially hydrogenated marine oil or rapeseed oil for three days or three weeks. Control rats were given groundnut oil. Chain-shortening of erucic acid, mainly to 18∶1, was found in all dietary groups. In the marine oil and rapeseed oil groups, the percentage of chain-shortened fatty acids in very low density lipoproteins-triacylglycerols (VLDL-TG) exported from the liver increased after prolonged feeding. A similar increase was found in liver TG only with partially hydrogenated marine oil. This oil, rich intrans fatty acids, thus seemed to be more effective in promoting chain-shortening. The fatty acid composition of the secreted and stored TG differed both with respect to total fatty acids and radioactively labeled fatty acids, indicating that at least 2 different pools of TG exist in the liver. The lack of lipidosis in livers from rats fed dietary oils rich in 22∶1 fatty acids is discussed in relation to these findings. In conclusion, a discussion is presented expressing the view that the reversal of the acute lipidosis in the hearts of rats fed rapeseed oil or partially hydrogenated marine oils is, to a large extent, derived from the increased chain-shortening capacity of erucic acid in liver.  相似文献   

18.
Rates of total and peroxisomal fatty acid oxidation were estimated from the production of14C-labeled CO2 and acid-soluble products from differently labeled [14C]fatty acids, in the absence and presence of antimycinrotenone, in homogenates of liver, heart and m. quadriceps. Total and peroxisomal oxidation rates of palmitic, oleic and linoleic acid were 3–4 times higher than those of arachidonic and adrenic acid which had higher oxidation rates than those of lignoceric and erucic acid. The peroxisomal contribution to the oxidation of the last fatty acids was similar to or higher than that of palmitic acid. For all fatty acids tested in these tissues, the mitochondrial contribution to β-oxidation was higher than the peroxisomal contribution. Production of14CO2 and14C-labeled, acid-soluble metabolites from [13-14]arachidonic acid indicated that polyunsaturated fatty acids can be chain-shortened beyond their double bonds in m. quadriceps and heart as well as in liver. Although 2,4-dienoyl-CoA reductase requires NADPH, addition of this coenzyme did not influence arachidonic acid oxidation. Arachidonic acid oxidation was inhibited by palmitic acid in mitochondria and peroxisomes, but arachidonic acid had only a slight effect on palmitic acid oxidation.  相似文献   

19.
During our ongoing project on the biosynthesis of R-(+)-octane-1,3-diol the metabolism of linoleic acid was investigated in stored apples after injection of [1-14C]-, [9,10,12,13-3H]-, 13C18- and unlabeled substrates. After different incubation periods the products were analyzed by gas chromatography-mass spectroscopy (MS), high-performance liquid chromatography-MS/MS, and HPLC-radiodetection. Water-soluble compounds and CO2 were the major products whereas 13(R)-hydroxy- and 13-keto-9(Z),11(E)-octadecadienoic acid, 9(S)-hydroxy-and 9-keto-10(E),12(Z)-octadecadienoic acid, and the stereoisomers of the 9,10,13- and 9,12,13-trihydroxyoctadecenoic acids were identified as the major metabolites found in the diethyl ether extracts. Hydroperoxides were not detected. The ratio of 9/13-hydroxy- and 9/13-keto-octadecadienoic acid was 1∶4 and 1∶10, respectively. Chiral phase HPLC of the methyl ester derivatives showed enantiomeric excesses of 75% (R) and 65% (S) for 13-hydroxy-9(Z),11(E)-octadecadienoic acid and 9-hydroxy-10(E),12(Z)-octadecadienoic acid, respectively. Enzymatically active homogenates from apples were able to convert unlabeled linoleic acid into the metabolites. Radiotracer experiments showed that the transformation products of linoleic acid were converted into (R)-octane-1,3-diol. 13(R)-Hydroxy-9(Z), 11(E)-octadecadienoic acid is probably formed in stored apples from 13-hydroperoxy-9(Z),11(E)-octadecadienoic acid. It is possible that the S-enantiomer of the hydroperoxide is primarily degraded by enzymatic side reactions, resulting in an enrichment of the R-enantiomer and thus leading to the formation of 13(R)-hydroxy-9(Z),11(E)-octadecadienoic acid.  相似文献   

20.
In a previous study we showed that intestinal uptake of α-linolenic acid (18∶3n−3) was carrier-mediated and we suggested that a plasma membrane fatty acid protein was involved in the transport of long-chain fatty acids. To further test this hypothesis, the mechanism of linoleic acid (18∶2n−6) uptake by isolated intestinal cells was examined using a rapid filtration method and 20 mM sodium taurocholate as solubilizing agent. Under these experimental conditions transport of [1-14C]linoleic acid monomers in the concentration range of 2 to 2220 nM was saturable with a Vm of 5.1±0.6 nmol/mg protein/min and a Km of 183±7 nM. Experiments carried out in the presence of metabolic inhibitors, such as 2,4-dinitrophenol and antimycin A, suggested that an active, carriermediated mechanism was involved in the intestinal uptake of this essential fatty acid. The addition of excess unlabeled linoleic acid to the incubation medium led to a 89% decrease in the uptake of [1-14C]linoleic acid, whiled-glucose did not compete for transport into the cell. Other long-chain polyunsaturated fatty acids added to the incubation mixture inhibited linoleic acid uptake by more than 80%. The presence of α-linolenic acid (18∶3n−3) in the incubation medium caused the competitive inhibition (Ki=353 nM) of linoleic acid uptake. The data are compatible with the hypothesis that intestinal uptake of both linoleic, and α-linolenic acid is mediated by a membrane carrier common to long-chain fatty acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号