首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Of the three final products of chlorophyll breakdown that in senescing cotyledons of oilseed rape are accumulated progressively, the nonfluorescent Bn-NCC-1 is the most abundant catabolite. It represents the malonylester of the minor catabolite Bn-NCC-3. The in vitro malonylation of Bn-NCC-3 into Bn-NCC-1 was investigated. Extracts from senescent as well as from presenescent cotyledons contained corresponding activities in the presence of malonyl-coenzyme A as the co-substrate. Malonyltransferase activity exhibited pH- and activation optima at 8 and 34 degrees, respectively, and it was saturable with an apparent Michaelis constant of 58 microM for Bn-NCC-3. The partially purified enzyme recognized chlorophyll catabolites as substrate specifically, provided that they had a free hydroxyl group in the ethyl side chain of pyrrole B.  相似文献   

2.
Using anti-caldesmon polyclonal and monoclonal (raised against the N-terminal fragment of chicken gizzard caldesmon) antibodies, a plant caldesmon-like protein, 107 kDa as determined by SDS-gel electrophoresis, has been identified based on Western blotting of total extracts of Ornithogalum virens pollen tubes. Biochemical investigations showed common properties of this protein with animal caldesmon--it binds to actin and, in a Ca(2+)-dependent manner, to calmodulin. In contrast to animal caldesmon, this plant cell counterpart is relatively resistant to proteolysis by endogenous proteases and sensitive to heat treatment. Our results show the presence of a caldesmon-like protein in higher plants for the first time.  相似文献   

3.
4.
The biosynthetic pathway of vitamin C in higher plants   总被引:2,自引:0,他引:2  
Vitamin C (L-ascorbic acid) has important antioxidant and metabolic functions in both plants and animals, but humans, and a few other animal species, have lost the capacity to synthesize it. Plant-derived ascorbate is thus the major source of vitamin C in the human diet. Although the biosynthetic pathway of L-ascorbic acid in animals is well understood, the plant pathway has remained unknown-one of the few primary plant metabolic pathways for which this is the case. L-ascorbate is abundant in plants (found at concentrations of 1-5 mM in leaves and 25 mM in chloroplasts) and may have roles in photosynthesis and transmembrane electron transport. We found that D-mannose and L-galactose are efficient precursors for ascorbate synthesis and are interconverted by GDP-D-mannose-3,5-epimerase. We have identified an enzyme in pea and Arabidopsis thaliana, L-galactose dehydrogenase, that catalyses oxidation of L-galactose to L-galactono-1,4-lactone. We propose an ascorbate biosynthesis pathway involving GDP-D-mannose, GDP-L-galactose, L-galactose and L-galactono-1,4-lactone, and have synthesized ascorbate from GDP-D-mannose by way of these intermediates in vitro. The definition of this biosynthetic pathway should allow engineering of plants for increased ascorbate production, thus increasing their nutritional value and stress tolerance.  相似文献   

5.
Immunophilins are intracellular receptors for the immunosuppressants cyclosporin A, FK506, and rapamycin. In addition to their use in organ transplantation, these natural products have been used to investigate signaling pathways in yeast, plant, and mammalian cells. We have recently described the identification of an immunosuppressant-sensitive signaling pathway in and the purification of several immunophilins from Vicia faba plants. We now report the molecular characterization of a 15 kDa FK506- and rapamycin-binding protein from V. faba (VfFKBP15). The amino acid sequence deduced from the cDNA starts with a signal peptide of 22 hydrophobic amino acids. The core region of VfFKBP15 is most similar to yeast and mammalian FKBP13 localized in the endoplasmic reticulum (ER). In addition, VfFKBP15 has a carboxyl-terminal sequence that is ended with SSEL, a putative ER retention signal. These findings suggest that VfFKBP15 is a functional homolog of FKBP13 from other organisms. Interestingly, two distinct cDNAs corresponding to two isoforms of FKBP15 have been cloned from Arabidopsis and also identified from rice data base, suggesting that pFKBP15 (plant FKBP15) is encoded by a small gene family in plants. This adds to the diversity of plant FKBP members even with the same subcellular localization and is in contrast with the situation in mammalian and yeast systems in which only one FKBP13 gene has been found. Like the mammalian and yeast FKBP13, the recombinant VfFKBP15 protein has rotamase activity that is inhibited by both FK506 and rapamycin with a Ki value of 30 nM and 0.9 nM, respectively, illustrating that VfFKBP15 binds rapamycin in preference over FK506. The mRNA of VfFKBP15 is ubiquitously expressed in various plant tissues including leaves, stems, and roots, consistent with the ER localization of the protein. Levels of VfFKBP15 mRNA are elevated by heat shock, suggesting a possible role for this FKBP member under stress conditions.  相似文献   

6.
We screened a bacteriophage display library of random decapeptides to identify peptide inhibitors of cholesteryl ester transfer protein (CETP). After affinity selection against CETP, bacteriophage-infected Escherichia coli were plated at clonal density and 36 random clones were isolated. Analysis of the relevant portion of the bacteriophage DNA from a group of 12 clones that had a relatively high affinity for CETP revealed that the corresponding amino acid sequences of the displayed peptides exhibited an ... Xaa-Arg-Met-Arg-Tyr-Xaa ... composite motif. Based on those results, decapeptides from this group were synthesized and one of them, DP1 (NH2-VTWRMWYVPA-COOH), inhibited CETP-catalyzed transfer of cholesteryl esters and triglycerides. Amino- and carboxy-terminal truncations of DP1 demonstrated that the original decapeptide could be reduced to a pentapeptide without loss of either its ability to bind to CETP or its ability to inhibit CETP-mediated lipid transfer. That pentapeptide, NH2-WRMWY-COOH (WRMWY, PNU-107368E), binds directly to CETP and its inhibition is consistent with that of a competitive inhibitor of CETP with a Ki of 164 microM. WRMWY or modified versions of this peptide may be useful in studying the interactions between CETP and plasma lipoproteins.  相似文献   

7.
We have recently shown that the endoplasmic reticulum (ER) membrane protein, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, is cleaved in isolated membrane fractions enriched for endoplasmic reticulum. Importantly, the cleavage rate is accelerated when the membranes are prepared from cells that have been pretreated with mevalonate or sterols, physiological regulators of the degradation process in vivo (McGee, T. P., Cheng, H. H., Kumagai, H., Omura, S., and Simoni, R. D. (1996) J. Biol. Chem. 271, 25630-25638). In the current study, we further characterize this in vitro cleavage of HMG-CoA reductase. E64, a specific inhibitor of cysteine-proteases, inhibits HMG-CoA reductase cleavage in vitro. In contrast, lactacystin, an inhibitor of the proteasome, inhibits HMG-CoA reductase degradation in vivo but does not inhibit the in vitro cleavage. Purified ER fractions contain lactacystin-sensitive and E64-insensitive proteasome activity as measured by succinyl-Leu-Leu-Val-Tyr-7-amino-4-methylcoumarin hydrolysis. We removed the proteasome from purified ER fractions by solubilization with heptylthioglucoside and observed that the detergent extracted, proteasome-depleted membrane fractions retain regulated cleavage of HMG-CoA reductase. This indicates that ER-associated proteasome is not involved in degradation of HMG-CoA reductase in vitro. In order to determine the site(s) of proteolysis of HMG-CoA reductase in vitro, four antisera were prepared against peptide sequences representing various domains of HMG-CoA reductase and used for detection of proteolytic intermediates. The sizes and antibody reactivity of the intermediates suggest that HMG-CoA reductase is cleaved in the in vitro degradation system near the span 8 membrane region, which links the N-terminal membrane domain to the C-terminal catalytic domain of the protein. We conclude that HMG-CoA reductase can be cleaved in the membrane-span 8 region by a cysteine protease(s) tightly associated with ER membranes.  相似文献   

8.
The energy transfer process in the minor light-harvesting antenna complex CP29 of green plants was probed in multicolor transient absorption experiments at 77 K using selective subpicosecond excitation pulses at 640 and 650 nm. Energy flow from each of the chlorophyll (Chl) b molecules of the complex could thus be studied separately. The analysis of our data showed that the "blue" Chl b (absorption around 640 nm) transfers excitation to a "red" Chl a with a time constant of 350 +/- 100 fs, while the 'red' Chl b (absorption at 650 nm) transfers on a picosecond time scale (2.2 +/- 0.5 ps) toward a "blue" Chl a. Furthermore, both fast (280 +/- 50 fs) and slow (10-13 ps) equilibration processes among the Chl a molecules were observed, with rates and associated spectra very similar to those of the major antenna complex, LHC-II. Based on the protein sequence homology between CP29 and LHC-II, a basic modelling of the observed kinetics was performed using the LHC-II structure and the F?rster theory of energy transfer. Thus, an assignment for the spectral properties and orientation of the two Chl's b, as well as for their closest Chl a neighbors, is put forward, and a comparison is made with the previous assignments and models for LHC-II and CP29.  相似文献   

9.
A novel cytotoxic cyclic heptapeptide, yunnanin C (1), was isolated from the roots of Stellaria yunnanensis. The structure of 1, cyclo(-Gly-Ile-Gly-Phe-Tyr-Ser-Pro-), was elucidated from spectroscopic evidence and by chemical degradation.  相似文献   

10.
11.
Under many environmental conditions, plants are exposed to levels of sunlight in excess of those required for photosynthesis. Then, a regulated increase in the rate of nonradiative dissipation of excess excitation energy in the thylakoid membrane correlates with the conversion of the carotenoid violaxanthin into zeaxanthin and provides protection from the damaging effects of excessive irradiation. The hypothesis that these carotenoids specifically control the oligomerization of the light harvesting complexes of photosystem II was tested by investigating the effects of violaxanthin and zeaxanthin on the behavior of the major complex, LHCIIb, on sucrose gradients; it was found that zeaxanthin stimulated the formation of LHCIIb aggregates with reduced chlorophyll fluorescence yield whereas violaxanthin caused the inhibition of such aggregation and an elevation of fluorescence. Measurements of 77 K fluorescence indicated that zeaxanthin was not exerting an additional direct quenching of chlorophyll fluorescence. These effects can explain the physiological control of the light harvesting system by the xanthophyll cycle.  相似文献   

12.
13.
A truncated form of annexin I, formed during Ca2+-induced translocation to neutrophil specific granules and secretory vesicles/plasma membranes, is generated through the action of an endogenous membrane protease. The cleavage of annexin I is inhibited by the metalloprotease inhibitor 1,10-phenanthroline as well as by Triton X-100 and dithiothreitol, classifying the protease as a membrane-bound, thiol-dependent metalloprotease. The cleavage site is located close to the N-terminal of annexin I, leaving a truncated form of the molecule, des1-8 annexin I, that contains the Ca2+-binding sites, as well as a number of phosphorylation sites of importance for the function of the protein. When assessing binding capacity to different neutrophil organelles, full-length annexin I bound to azurophil granules, specific granules, and secretory vesicles/plasma membranes, while des1-8 annexin I only bound to specific granules and secretory vesicles/plasma membranes, but not to azurophil granules (C. Sj?lin, C. Dahlgren, Biochim. Biophys. Acta 1281 (1996) 227-234). This implies that there are different mechanisms of binding to neutrophil organelles of full-length annexin I and the truncated form, and that cleavage of annexin I might be of regulatory importance for the degranulation process.  相似文献   

14.
Valinomycin added to a suspension of chlorophyll a containing lecithin vesicles induces slight changes in the spectrum of chlorophyll a. These changes are measured as a difference spectrum between samples with and without valinomycin but of otherwise identical composition. The analysis of the experiments reveals that the effect is neither associated with the ionophoric properties of valinomycin nor due to a direct interaction of this agent with chlorophyll a. The molar ratio of valinomycin dissolved in the membrane to lecithin is found to be the relevant parameter, thus indicating an interaction between these two components. As a consequence, the aggregational state of the lecithin molecules is altered. Chlorophyll a incorporated into the membrane acts as a sensor, i.e. it reflects the alteration by a change in its spectroscopic parameters.  相似文献   

15.
MtDNAs from BY-2 cells and rice root were analyzed by random amplified polymorphic DNA (RAPD) assay and Southern hybridization analysis. A number of differences were observed in the RAPD patterns amplified from mtDNAs sampled at different phases of the BY-2 cell culture. RAPD fragments also varied with the template DNAs derived from various areas of rice root tip. When a RAPD fragment was hybridized to restriction fragments of whole DNAs, isolated from the distal area of the apical meristem and differentiated elongation zone of a root, two distinct stoichiometric differences were observed in the hybridization signals. This suggests that the organization of mt-genome in prototypic cells in the root apical meristem differs from that found in the differentiated cells.  相似文献   

16.
17.
Insoluble elastin was used as a substrate to characterize the peptide bond specificities of human (HME) and mouse macrophage elastase (MME) and to compare these enzymes with other mammalian metalloproteinases and serine elastases. New amino termini detected by protein sequence analysis in insoluble elastin following proteolytic digestion reveal the P'1 residues in the carboxyl-terminal direction from the scissile bond. The relative proportion of each amino acid in this position reflects the proteolytic preference of the elastolytic enzyme. The predominant amino acids detected by protein sequence analysis following cleavage of insoluble elastin with HME, MME, and 92-kDa gelatinase were Leu, Ile, Ala, Gly, and Val. HME and MME were similar in their substrate specificity and showed a stronger preference for Leu/Ile than did the 92-kDa enzyme. Fibroblast collagenase showed no activity toward elastin. The amino acid residues detected in insoluble elastin following hydrolysis with porcine pancreatic elastase and human neutrophil elastase were predominantly Gly and Ala, with lesser amounts of Val, Phe, Ile, and Leu. There were interesting specificity differences between the two enzymes, however. For both the serine and matrix metalloproteinases, catalysis of peptide bond cleavage in insoluble elastin was characterized by temperature effects and water requirements typical of common enzyme-catalyzed reactions, even those involving soluble substrates. In contrast to what has been observed for collagen, the energy requirements for elastolysis were not extraordinary, consistent with cleavage sites in elastin being readily accessible to enzymatic attack.  相似文献   

18.
19.
对步进轧制在940℃α β区轧制Ti 6Al 4V合金棒材的锥形体取变形量不同的部位,利用光学显微镜、透射电镜观察其组织形貌及位错组态,分析了其变形机制,探讨了材料显微组织随变形量变化的规律及其形变硬化、回复、再结晶的演变过程.实验表明利用步进轧机加工,所得Ti 6Al 4V合金棒材芯部和边部的组织较均匀.  相似文献   

20.
A cDNA for a water-soluble chlorophyll (Chl) protein (WSCP) from cauliflower (Brassica oleracea L. var botrys) was cloned and sequenced. The cDNA contained an open reading frame encoding 19 residues for a signal peptide and 199 residues for the mature form of WSCP. The sequence showed extensive homology to drought-stress-related, 22-kDa proteins in some Brassicaceae plants. Functional WSCP was expressed in Escherichia coli as a fusion protein with a maltose-binding protein (MBP). When the recombinant MBP-WSCP was incubated with thylakoid membranes, the MBP-WSCP removed Chls from these membranes. During this process, the monomer of the apo-MBP-WSCP successfully bound Chls and was converted into tetrameric holo-MBP-WSCP. The reconstituted MBP-WSCP exhibited absorption and fluorescent spectra identical to those of the native WSCP purified from cauliflower leaves. The Chl a/b ratio in native WSCP indicates a high content of Chl a, which was mainly due to the higher affinity of MBP-WSCP for Chl a. WSCP is the first example of a hydrophilic protein that can transfer Chls from thylakoid hydrophobic proteins. Possible functions of WSCP are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号