首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The constitution of the ternary system Al-Cr-Ti is investigated over the entire composition range using X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), differential thermal analysis (DTA) up to 1500 °C, and metallography. Solid-state phase equilibria at 900 °C are determined for alloys containing ≤75 at. pct aluminum and at 600 °C for alloys containing >75 at. pct Al. A reaction scheme linking these solid-state equilibria with the liquidus surface is presented. The liquidus surface for ≤50 at. pct aluminum is dominated by the primary crystallization field of bcc β(Ti,Cr,Al). In the region >50 at. pct Al, the ternary L12-type phase τ forms in a peritectic reaction p max at 1393 °C from L + TiAl. Furthermore, with the addition of chromium, the binary peritectic L + α(Ti,Al) = TiAl changes into an eutectic L = α(Ti,Al) + TiAl. This eutectic trough descends monotonously through a series of transition reactions and ternary peritectics to end in the binary eutectic L = Cr7Al45 + (Al).  相似文献   

3.
A melting and solidification study of alloy 625   总被引:1,自引:0,他引:1  
The melting and solidification behavior of Alloy 625 has been investigated with differential thermal analysis (DTA) and electron microscopy. A two-level full-factorial set of chemistries involving the elements Nb, C, and Si was studied. DTA results revealed that all alloying additions decreased the liquidus and solidus temperatures and also increased the melting temperature range. Terminal solidification reactions were observed in the Nb-bearing alloys. Solidification microstructures in gastungsten-arc welds were characterized with transmission electron microscopy (TEM) techniques. All alloys solidified to an austenitic (γ) matrix. The Nb-bearing alloys terminated solidification by forming various combinations of γ/MC(NbC), γ/Laves, and γ/M6C eutectic-like constituents. Carbon additions (0.035 wt pct) promoted the formation of the γ/MC(NbC) constituent at the expense of the γ/Laves constituent. Silicon (0.4 wt pct) increased the formation of the yJLaves constituent and promoted formation of the γ/M6C carbide constituent at low levels (<0.01 wt pct) of carbon. When both Si (0.4 wt pct) and C (0.035 wt pct) were present, the γ/MC(NbC) and γ/Laves constituents were observed. Regression analysis was used to develop equations for the liquidus and solidus temperatures as functions of alloy composition. Partial derivatives of these equations taken with respect to the alloying variables (Nb, C, Si) yielded the liquidus and solidus slopes t(m L , m S ) for these elements in the multicomponent system. Ratios of these liquidus to solidus slopes gave estimates of the distribution coefficients (k) for these same elements in Alloy 625.  相似文献   

4.
Evolution of boride morphologies in TiAl-B alloys   总被引:2,自引:0,他引:2  
The solidification of γ-TiAl alloys with relatively low (<2 at. pct) additions of boron is discussed. Binary Ti-Al alloys containing 49 to 52 at. pct Al form primary α-(Ti) dendrites from the melt, which are subsequently surrounded by γ segregate as the system goes through the peritectic reactionL + α →γ. Alloys between 45 and 49 at. pct Al go through a double peritectic cascade, forming primary β-(Ti) surrounded by α-(Ti) and eventually by γ in the interdendritic spaces. Boron additions to these binary alloys do not change the basic solidifi-cation sequence of the matrix but introduce the refractory compound TiB2 in a variety of mor-phologies. The boride develops as highly convoluted flakes in the leaner alloys, but needles, plates, and equiaxed particles gradually appear as the B content increases above ∼1 at. pct. Increasing the solidification rate initially promotes the formation of flakes over plates/needles and ultimately gives way to very fine equiaxed TiB2 particles in the interdendritic spaces of the metallic matrix. Furthermore, the primary phase selection in the 49 to 52 at. pct Al range changes from α-(Ti) to β-(Ti) at supercoolings of the order of 200 K. The different boride morphologies are fully characterized, and their evolution is rationalized in terms of differences in their nucleation and growth behavior and their relationship to the solidification of the inter-metallic matrix. Formerly Research Assistant, University of California-Santa Barbara (UCSB) Formerly Professor of Materials and Dean of the College of Engineering at UCSB  相似文献   

5.
The response of as-cast structures of 12 alloys in the Ti-Al-Mo system containing 44 to 50 at. pct Al and 2 to 6 at. pct Mo to simple single step heat treatments in the temperature range 1373 to 1673 K is described. The microsegregation patterns present in the cast structure persist to a large extent after heat treatment, especially below 1673 K. However, tentative conclusions regarding phase equilibria in this temperature and composition range are drawn from the results. High-temperature equilibria are dominated by the β, α+β, and α+γ phase fields, while the β+γ phase field dominates equilibrium below 1473 K. Three major types of transformation behavior are observed: a massive α to γ transformation, which occurs within the α phase on quenching from 1673 and 1573 K in alloys centered around the 48 pct Al composition; a eutectoid transformation from α to B2+γ mixtures, which occurs at 1473 K and below in alloys centered around the 48Al-4Mo and 46Al-6Mo compositions; direct γ precipitation in β, which occurs primarily in the 44Al-6Mo composition at 1273 K and below; and finally growth of γ lamellae in α+γ lamellar structures with B2 precipitation on lamellar interfaces, which occurs over a broad range of alloy compositions and temperatures.  相似文献   

6.
Fixed composition ratios of Fe and Zn corresponding to γ-(Fe3Zn110), Γ1-(Fe5Zn21), δ-(FeZn7), and ζ-(FeZn13) with the addition of 5 pct Al (wt) were ball milled in an argon gas atmosphere to form homogenous alloys. Nonisothermal kinetic analyses of the mechanically alloyed materials, based on differential scanning calorimetry (DSC) measurements, revealed two diffusion-controlled processes during the evolution of the δ+5 pct Al and ζ+5 pct Al compositions with activation energies of 227±2 and 159±1 kJ/mole, respectively. Other endothermic and exothermic reactions detected for these compositions are consistent with the Fe-Zn-Al equilibrium phase systems with respect to the formation of the Fe3Al, Fe2Al5, and δ-FeZn7 phases Based on the evidence of FeAl2 formation at 440 °C for the ζ+5 pct Al composition from X-ray diffraction (XRD) and DSC measurements, the revision/re-evaluation of the Fe-Zn-Al equilibrium phase diagrams is proposed. The Γ+5 pct Al and Γ1+5 pct Al compositions evolved similarly through the same fields, except at 400 °C, where the former consisted of α-Fe + Γ + δ, while the later was without the Γ phase.  相似文献   

7.
An investigation has been made into the solidification behavior and microstructural evolution of AM50, AM70, and AM90 alloys during rheo-diecasting, their processibility, and the resulting mechanical properties. It was found that solidification of AM series alloys under intensive melt shearing in the unique twin-screw slurry maker during rheo-diecasting gave rise to numerous spheroidal primary magnesium (Mg) particles that were uniformly present in the microstructure. As a result, the network of the β-Mg17Al12 phase was consistently interrupted by these spheroidal and ductile particles. Such a microstructure reduced the obstacle of deformation and the harmfulness of the β-Mg17Al12 network on ductility, and therefore improved the ductility of rheo-diecast AM alloys. It was shown that, even with 9 wt pct Al, the elongation of rheo-diecast AM90 still achieved (9 ± 1.2) pct. Rheodiecasting thus provides an attractive processing route for upgrading the alloy specification of AM series alloys by increasing the aluminum (Al) content while ensuring ductility. Assessment of the processibility of AM series alloys for semisolid processing showed that high Al content AM series alloys are more suitable for rheo-diecasting than low Al content alloys, because of the lower sensitivity of solid fraction to temperature, the lower liquidus temperature, and the smaller interval between the semisolid processing temperature and the complete solidification temperature.  相似文献   

8.
Solidification of M2 high speed steel   总被引:5,自引:0,他引:5  
The freezing process in AISI type M2 high speed tool steel (6 pct W, 5 pct Mo, 4 pct Cr, 2 pct V, 0.8 pct C) was studied by metallographic and thermal analysis techniques. Unidirectional solidification of small laboratory melts in a modified crystal growing apparatus was employed to provide metallographic sections of known macroscopic growth direction. Also cooling curves were obtained on 40 g specimens solidified in thimble crucibles. X-ray microradiography, electron probe scanning techniques, and quantitative microanalysis of dendrites and interdendritic carbides were extensively used to supplement conventional metallography. Carbon and vanadium contents of M2 were varied in order to observe the effect of an austenite and ferrite stabilizer on the thermal analysis curves and microstructure. The nonequilibrium freezing process in M2 includes three major liquid-solid reactions: 1) Liquid → Ferrite, 1435°C; 2) Liquid + Ferrite → Austenite, 1330°C; 3) Liquid → Austenite + M6C + MC, 1240°C. These reactions account for the as-cast structure of the commercial alloy. The addition of carbon depresses the liquidus (1) and solidus temperatures (3) and narrows the gap between the liquidus (1) and peritectic transformation (2). This gap is eliminated at > 1.39 wt pct C, where the initial freezing reaction is the crystallization of austenite. The accompanying microstructural change is the elimination of σ eutectoid dendrite cores. The addition of vanadium promotes ferrite formation by strongly depressing the peritectic reaction and thus widening the gap between the liquidus and the peritectic.  相似文献   

9.
In the current investigation, the effect of Cr on the solidification characteristics and as-cast microstructure of pseudobinary γ-δ eutectic alloys based on a near-eutectic composition (Ni-5.5Al-13.5Nb at. pct) was investigated. It was found that Cr additions promote the formation of a higher volume fraction of γ-δ eutectic microstructure in the interdendritic region. Increasing levels of Cr also triggered morphological changes in the γ-δ eutectic and the formation of γ-γ′-δ ternary eutectic during the last stage of solidification. A detailed characterization of the as-cast alloys also revealed that Cr additions suppressed the liquidus, solidus, and γ′ precipitation temperature of these γ/γ′-δ eutectic alloys. A comparison of the experimental results with thermodynamic calculations using the CompuTherm Pandat database (CompuTherm LLC, Madison, WI) showed qualitative agreement.  相似文献   

10.
The graded material of Ti6Al4V-Rene88DT superalloy, which has shown the potential to be applied in aeroengines, was fabricated from prealloyed metal powders using the technique of laser rapid forming (LRF). A compositional gradient, from 100 pct Ti6Al4V to Ti6Al4V-38 pct Rene88DT, was achieved within a thickness of laser deposit of 54 mm. The solidification behavior and the phase evolution of the compositionally graded material were studied. The results of the X-ray diffraction (XRD) analysis together with the metallographic study showed that a series of phase evolutions, α + βα + β + Ti2Ni → β + Ti2Ni, along the compositional gradient have occurred. The hardness value of the graded material was measured along the compositional gradient, and the results were explained in terms of the various phases present. The condition for columnar-to-equiaxed transition observed in the graded material was explained, based on Hunt’s criterion. Finally, the morphology of β + Ti2Ni anomalous eutectic is discussed.
T.M. Yue (Professor)Email:
  相似文献   

11.
Thermoelastic martensite and shape memory effect in ductile Cu-Al-Mn alloys   总被引:8,自引:0,他引:8  
Ductile shape memory (SM) alloys of the Cu-AI-Mn system have been developed by controlling the degree of order in the β phase. Additions of Mn to the binary Cu-Al alloy stabilize the β phase and widen the single-phase region to lower temperature and lower Al contents. It is shown that Cu-Al-Mn alloys with low Al contents have either the disordered A2 structure or the ordered L21 structure with a lower degree of order and that they exhibit excellent ductility. The disordered A2 phase martensitically transforms to the disordered Al phase with a high density of twins. The martensite phase formed from the ordered L21 phase has the 18R structure. The SM effect accompanies both the A2 → Al and L21 → 18R martensitic transformations. These alloys exhibit 15 pct strain to failure, 60 to 90 pct rolling reduction without cracking, and 80 to 90 pct recovery from bend test in the martensitic condition. Experimental results on the microstructure, crystal structure, mechanical properties, and shape memory behavior in the ductile Cu-AI-Mn alloys are presented and discussed.  相似文献   

12.
Ti-Fe binary alloys were rapidly solidified by the melt-spinning technique, and four compositions were examined: Ti-5 wt pct Fe, which is the critical composition for theβ to ω athermal transformation; Ti-10 wt pct Fe, which represents a hypoeutectoid composition; the eutectoid composition Ti-15 wt pct Fe; and Ti-20 wt pct Fe, as an example of a hypereutectoid alloy. The Ti-5 wt pct Fe rapidly solidified ribbons are composed of two different structures. The first consists of α′-martensite plates inβ matrix and the second, athermal ω particles inβ matrix. The Ti-10, 15, and 20 wt pct Fe alloys are also composed of two structures. These areβ grains and isothermal-like ω particles inβ matrix. A solidification model is suggested which explains the existence of two different microstructures at the same composition and the for-mation of two kinds of ω particles.  相似文献   

13.
A regular solution model is fit to experimental equilibrium temperatures(T 0) and pressures(P 0) for diffusionlessδ→α transformations in Pu-Ga and Pu-Al alloys, in order to define the chemical free energy change ΔG forδ→ α transformation. Analysis of reported isothermalδ→ αtransformation rate data in terms of nucleation-controlled martensitic kinetics gives a nucleation activation energyQ which is a nonlinear function of ΔG. The activation volumeV * defined byδQ/δΔG is of the order of 10 to 40 atomic volumes, suggestive of rate control by an interfacial Peierls barrier. The grain size dependence of the transformation-start temperature at a fixed cooling rate of 2.08 × 10-2 Ks-1 is measured in a Pu-1.7 at. pct Ga alloy, revealing an inhibition of transformation at fine grain sizes. The overall kinetic behavior is characteristic of a martensitic mechanism.  相似文献   

14.
The solidification reaction sequences of experimental superalloys containing systematic variations in Fe, Nb, Si, and C were studied using differential thermal analysis (DTA) and microstructural characterization techniques. The reaction sequences responsible for microstructural development were found to be similar to those expected in the Ni-Nb-C ternary system and commercial superalloys of comparable composition. The solute-rich interdendritic liquid generally exhibited two eutectic-type reactions at the terminal stages of solidification: L → (γ+NbC) and L → (γ+Laves). The Ni-base alloys with a high C/Nb ratio represented the only exception to this general solidification sequence. This group of alloys terminated solidification with the L → (γ + NbC) reaction and did not exhibit the γ/Laves constituent. At similar levels of solute elements (Nb, Si, and C), the Fe-base alloys always formed more of the γ/Laves eutectic-type constituent than the corresponding Ni-base alloys. Silicon additions also increased the amount of the γ/Laves constituent that formed in the assolidified microstructure, while C additions promoted formation of γ/NbC. The influence of Nb was dependent on the C content of the alloy. When the C content was low, Nb additions generally promoted formation of γ/Laves, while Nb additions to alloys with high C led to formation of the γ/NbC constituent. The results of this work are combined with quantitative analyses for developing γ-Nb-C pseudoternary solidification diagrams in a companion article.  相似文献   

15.
The effect of Si addition on the microstructure and shape recovery of FeMnSiCrNi shape memory alloys has been studied. The microstructural observations revealed that in these alloys the microstructure remains single-phase austenite (γ) up to 6 pct Si and, beyond that, becomes two-phase γ + δ ferrite. The Fe5Ni3Si2 type intermetallic phase starts appearing in the microstructure after 7 pct Si and makes these alloys brittle. Silicon addition does not affect the transformation temperature and mechanical properties of the γ phase until 6 pct, though the amount of shape recovery is observed to increase monotonically. Alloys having more than 6 pct Si show poor recovery due to the formation of δ-ferrite. The shape memory effect (SME) in these alloys is essentially due to the γ to stress-induced ε martensite transformation, and the extent of recovery is proportional to the amount of stress-induced ε martensite. Alloys containing less than 4 pct and more than 6 pct Si exhibit poor recovery due to the formation of stress-induced α′ martensite through γ-ε-α′ transformation and the large volume fraction of δ-ferrite, respectively. Silicon addition decreases the stacking fault energy (SFE) and the shear modulus of these alloys and results in easy nucleation of stress-induced ε martensite; consequently, the amount of shape recovery is enhanced. The amount of athermal ε martensite formed during cooling is also observed to decrease with the increase in Si.  相似文献   

16.
It has been reported that the mechanical properties and the corrosion resistance (CR) of metallic alloys depend strongly on the solidification microstructural arrangement. The correlation of corrosion behavior and mechanical properties with microstructure parameters can be very useful for planning solidification conditions in order to achieve a desired level of final properties. The aim of the present work is to investigate the influence of heat-transfer solidification variables on the microstructural array of both Al 9 wt pct Si and Zn 27 wt pct Al alloy castings and to develop correlations between the as-cast dendritic microstructure, CR, and tensile mechanical properties. Experimental results include transient metal/mold heat-transfer coefficient (h i), secondary dendrite arm spacing (λ2), corrosion potential (E Corr), corrosion rate (i Corr), polarization resistance (R 1), capacitances values (Z CPE), ultimate tensile strength (UTS, σ u ), yield strength (YS, σ y ), and elongation. It is shown that σ U decreases with increasing λ2 while the CR increases with increasing λ2, for both alloys experimentally examined. A combined plot of CR and σ U as a function of λ2 is proposed as a way to determine an optimum range of secondary dendrite arm spacing that provides good balance between both properties.  相似文献   

17.
The influence of aluminum additions to a Ti-7 at. pet Mo alloy on the phase equilibria was investigated. The microstructures of the alloys, Ti-7 pct Mo-7 pct Al and Ti-7 pct Mo-16 pct Al, were determined by light and electron microscopy. It was found that with increasing aluminum concentration the formation of the metastable w phase was suppressed. In the Ti-7 pct Mo-16 pct Al alloy the β phase decomposed upon quenching by precipitating coherent, ordered particles having a B2 type of crystal structure (β2). At low temperatures the equilibrium phases for this alloy were β + α+ β 2, whereas at high temperature (850° to 950°C) the Ti3Al phase was in two-phase equilibrium with the β phase. The four-phase equilibrium which exists at a temperature of about 550°C involves the reaction β + Ti3Al ⇌ α + β2. G. LUETJERING, formerly Staff Member Materials Research Center, Allied Chemical Corp., Morristown, N. J.,  相似文献   

18.
Nickel-rich β-NiAl alloys, which are potential materials for high-temperature shape-memory alloys, show a thermoelastic martensitic transformation, which produces their shape memory effect. However, the transformation to Ni5Al3 phase during heating of NiAl martensite can interrupt the reversible martensitic transformation; consequently, the shape memory effect in NiAl martensite might not appear after heating. The phase transformation process in binary Ni-(34 to 37)Al martensite was investigated by differential thermal analysis (DTA) method, and we found that the condition of reversible martensitic transformation was not the β → Ni5Al3 transformation, but rather the M → Ni5Al3 transformation occurring at 250 °C to 300 °C. Therefore, the transformation temperature of M → Ni5Al3 determined the highest operating temperature for the shape memory effect. For verifying the critical temperature, the phase transformation process was investigated for eight ternary Ni-33Al-X alloys (X=Cu, Co, Fe, Mn, Cr, Ti, Si, and Nb). Only Ti, Si, and Nb additions were found to be effective in dropping the M s temperature, and they facilitated the shape memory effect in Ni-33Al-X alloys. In particular, the addition of Si and Nb raised the transformation temperature of M → Ni5Al3, a potentially beneficial effect for shape memory at higher temperatures. This article is based on a presentation made in the symposium entitled “Fundamentals of Structural Intermetallics,” presented at the 2002 TMS Annual Meeting, February 21–27, 2002, in Seattle, Washington, under the auspices of the ASM and TMS Joint Committee on Mechanical Behavior of Materials.  相似文献   

19.
20.
The mechanism by which iron causes casting defects in the AA309 (Al-5 pct Si-1.2 pct Cu-0.5 pct Mg) may be related to the solidification sequence of the alloy. Superimposing calculated segregation lines on the liquidus projection of the ternary Al-Si-Fe phase diagram suggests that porosity is minimized at a critical iron content when solidification proceeds directly from the primary field to the ternary Al-Si-βAl5FeSi eutectic point. Solidification via the binary Al-βAl5FeSi eutectic is detrimental to casting integrity. This hypothesis was tested by comparing the critical iron content observed in the standard AA309 alloy to that of a high-silicon (10 pct Si) variant of this alloy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号