首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pt/CoAl2O4/Al2O3, Pt/CoOx/Al2O3, CoAl2O4/Al2O3 and CoOx/Al2O3 catalysts were studied for combination CO2 reforming and partial oxidation of CH4. The results indicate that Pt/CoAl2O4/Al2O3 is the most effective, and XRD results indicate that Pt species are well dispersed over the Pt/CoAl2O4/Al2O3. High dispersion is related to the presence of CoAl2O4, formed during calcining at high temperature before Pt addition. In the presence of Pt, CoAl2O4 in the catalyst could be reduced partially at 973 K. Based on these results, it appears that zerovalent platinum with high dispersion and zerovalent cobalt resulting from CoAl2O4 reduction are responsible for high activity in the Pt/CoAl2O4/Al2O3 catalyst.  相似文献   

2.
Steam reforming of commercially available LPG using Ru/Al2O3 and Ni/Al2O3 catalysts has been studied at temperatures between 573 and 773 K. Ru/Al2O3 catalyst showed higher rates of reaction and lower activation energies of the three main components of LPG, compared with Ni/Al2O3. However, Ni/Al2O3 catalyst showed a better H2:CH4 selectivity. The activation energy of n-butane was the lowest over Ru/Al2O3, whereas over Ni/Al2O3, propane had the lowest activation energy. The activation energy of i-butane was always the highest over both catalysts, which suggests that both catalysts performed better with unbranched molecules. A slight increase in activation energy was observed, when each component of the LPG mixture was studied separately as a pure gas, compared with being mixed in LPG. At a constant temperature of 773 K, hydrogen production yield and H2:CH4 selectivity were determined using Ru/Al2O3 at different steam:carbon (S:C) ratios and LPG flow rates. It was found that the yield and selectivity increased with the increase in S:C ratio and the decrease in the flow rate. The highest yield of 0.64 was achieved using S:C ratio of 6.5 and a LPG flow rate of 50 mL min?1. The work provides valuable information on steam reforming of pure components of LPG, compared with when they are in the mixture. The comparison is done using conventional steam reforming catalyst, Ni/Al2O3, and compared with Ru/Al2O3. The observed trends and variations in reaction rates, in pure and mixed gases, indicated that the mechanism of steam reforming of a hydrocarbon mixture depends on its composition.  相似文献   

3.
CO adsorbed infrared spectroscopy study was conducted in this work in order to better understand the significantly improved anti-coke performance of Ni/Al2O3 catalyst obtained via argon glow discharge plasma treatment. The present study revealed a significant decrease of linear to bridge (L/B) adsorbed CO for glow discharge plasma treated Ni/Al2O3, compared to that for untreated Ni/Al2O3, indicating an enhancement of close packed plane concentration. This structure change leads to lower methane turnover frequency (TOF) and better balance of carbon formation-gasification, resulting in better anti-coke property of Ni/Al2O3 for CO2 reforming of methane.  相似文献   

4.
Methanobactin (Mb) is a copper-binding peptide that appears to function as an agent for copper sequestration and uptake in methanotrophs. Mb can also bind and reduce Au(III) to Au(0). In this paper, Au/Al2O3 catalysts prepared by a novel incipient wetness-Mb-mediated bioreduction method were used for glucose oxidation. The catalysts were characterized, and the analysis revealed that very small gold nanoparticles with a particle size <4 nm were prepared by the incipient wetness-Mb-mediated bioreduction method, even at 1.0% Au loading (w/w). The influence of Au loading, calcination temperature and calcination time on the specific activity of Au/Al2O3 catalysts was systematically investigated. Experimental results showed that decomposing the Mb molecules properly by calcinations can enhance the specific activity of Au/Al2O3 catalysts, though they acted as reductant and protective agents during the catalyst preparation. Au/Al2O3 catalysts synthesized by the method exhibited optimum specific activity under operational synthesis conditions of Au loading of 1.0 wt % and calcined at 450 °C for 2 h. The catalysts were reused eight times, without a significant decrease in specific activity. To our knowledge, this is the first attempt at the preparation of Au/Al2O3 catalysts by Mb-mediated in situ synthesis of gold nanoparticles.  相似文献   

5.
The steam reforming of methanol was studied over Cu/Al2O3 catalysts with the addition of yttria-doped ceria (YDC). The YDC-modified catalysts were prepared by impregnating a -Al2O3 support with Y and Ce then with Cu. The addition of YDC drastically enhanced the activity of Cu/Al2O3 in the methanol reforming reaction. The enhanced activity was attributed to the increase of Cu+ species by YDC in the methanol reforming environment. However, the addition of YDC decreased the copper dispersion. The Cu dispersion could be enhanced by adding chromium oxide. The addition of YDC and Cr where Al2O3 was first impregnated with Cr then with YDC showed the most pronounced enhancement of the catalyst activity. At reaction temperatures of 200250 °C, the CO concentration in the products was smaller than 0.1%.  相似文献   

6.
CO2 reforming of methane was studied over modified Ni/Al2O3 catalysts. The metal modifiers were Co, Cu, Zr, Mn, Mo, Ti, Ag and Sn. Relative to unmodified Ni/Al2O3, catalysts modified with Co, Cu and Zr showed slightly improved activity, while other promoters reduced the activity of CO2 reforming. Mn-promoted catalyst showed a remarkable reduction in coke deposition, while entailing only a small reduction in catalytic activity compared to unmodified catalyst. The catalysts prepared at high calcination temperatures showed higher activity than those prepared at low calcination temperature. The Mn-promoted catalyst showed very low coke deposition even in the absence of diluent gas and the activity changed only slightly during 100 h operation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Meso-porous Al2O3-supported Ni catalysts exhibited the highest activity, stability and excellent coke-resistance ability for CH4 reforming with CO2 among several oxide-supported Ni catalysts (meso-porous Al2O3 (Yas1-2, Yas3-8), -Al2O3, -Al2O3, SiO2, MgO, La2O3, CeO2 and ZrO2). The properties of deposited carbons depended on the properties of the supports, and on the meso-porous Al2O3-supported Ni catalyst, only the intermediate carbon of the reforming reaction formed. XRD and H2-TPR analysis found that mainly spinel NiAl2O4 formed in meso-porous Al2O3 and -Al2O3-supported catalysts, while only NiO was detected in -Al2O3, SiO2, CeO2, La2O3 and ZrO2 supports. The strong interaction between Ni and meso-porous Al2O3 improved the dispersion of Ni, retarded its sintering and improved the activated adsorption of CO2. The coking reaction via CH4 temperature-programed decomposition indicated that meso-porous Al2O3-supported Ni catalysts were less active for carbon formation by CH4 decomposition than Ni/-Al2O3 and Ni/-Al2O3.  相似文献   

8.
LaNi(1−x)FexO3 (x=0, 0.2, 0.4 and 0.7) perovskite-type catalysts were modified by the partial substitution of nickel by iron, aiming to increase the stability and resistance to carbon deposition during the methane dry reforming reaction. The results showed that a suitable combination of precipitation and calcination steps could result in oxides with the desired structure and with improved properties from the point of view of heterogeneous catalysis. The partial substitution of Ni by Fe in the perovskite structure resulted in decreasing rates of conversion of both reactants. However, the stability of the catalyst during the reaction was highly increased. These substituted catalysts were shown to be stable and the LaNi0.8Fe0.2O3 catalyst, calcined at 800 °C for 5 h, was the most active in the reaction conditions.  相似文献   

9.
The performance of different Cu/CeO2/Al2O3 catalysts of varying compositions is investigated for the oxidative steam reforming of methanol (OSRM) in order to produce the hydrogen selectively for polymer electrolyte membrane (PEM) fuel cell applications. All the catalysts were prepared by co-precipitation method and characterized for their surface area, pore volume and oxidation–reduction behavior. The effect of various operating parameters studied are as follows: reaction temperature (200–300 °C), contact-time (W/F = 3–15 kgcat s mol− 1) and oxygen to methanol (O/M) molar ratio (0–0.5). The steam to methanol (S/M) molar ratio = 1.5 and pressure = 1 atm were kept constant. Among all the catalysts studied, catalyst Cu–Ce–Al:30–20–50 exhibited 100% methanol conversion and 179 mmol s− 1 kgcat− 1 hydrogen production rate at 280 °C with carbon monoxide formation as low as 0.19%. The high catalytic activity and hydrogen selectivity shown by ceria promoted Cu/Al2O3 catalysts is attributed to the improved specific surface area, dispersion and reducibility of copper which were confirmed by characterizing the catalysts through temperature programmed reduction (TPR), CO chemisorption, X-ray diffraction (XRD) and N2 adsorption–desorption studies. Reaction parameters were optimized in order to produce hydrogen with carbon monoxide formation as low as possible. The time-on-stream stability test showed that the Cu/CeO2/Al2O3 catalysts were quite stable.  相似文献   

10.
An introduction of small amounts of molybdenum and tungsten compounds into the nickel catalyst of the steam reforming of methane considerably reduces the detrimental effect of carbon deposit formation, while entailing no change in the catalyst activity.  相似文献   

11.
The associative desorption kinetics of O2 from a 15 wt% Ag/-Al2O3 atalyst were studied under atmospheric pressure in a microreactor set-up by performing temperature-programmed desorption (TPD) experiments. Saturation with chemisorbed atomic oxygen (O*) was achieved by dosing O2 for 1 h at 523 K and at atmospheric pressure followed by cooling in O2 to room temperature. The TPD spectra showed almost symmetric O2 peaks centred above 500 K, indicating associative desorption of O2 from Ag metal surface sites. By varying the heating rates from 2 to 20 K min-1, the O2 TPD peak maxima were found to shift from 508 to 542 K, respectively. A microkinetic analysis of these TPD traces yielded an activation energy for desorption of 149±2 kJ mol-1 and a corresponding pre-exponential factor of 2×1012±1×1012 s-1 in good agreement with the kinetic parameters reported for O2 desorption under UHV conditions from Ag(111) and Ag(110) single crystal surfaces.  相似文献   

12.
The CO conversion and selectivity to C1+ and C11+ wax products over Co/Al2O3 as well as Ru/Co/Al2O3 Fischer-Tropsch (F-T)catalysts were investigated by varying reaction temperature (210-250 °C), system pressure (1.0-3.0 MPa), GHSV (1000-6000 L/kg/h), superficial gas velocity (1.7-13.6 cm/s) and slurry concentration (9.09-26.67 wt.%) in a slurry bubble column reactor (0.05 m diameter × 1.5 m height) to determine the optimum operating conditions. Squalane or paraffin wax was used as initial liquid media. The overall CO conversion increased with increasing reaction temperature, system pressure and catalyst concentration. However, the local maximum CO conversion was exhibited at GHSV of 1500-2000 L/kg/h and superficial gas velocity of 3.4-5.0 cm/s. The CO conversion in the case of Ru/Co/Al2O3 was much higher and stable than that in the case of Co/Al2O3. The selectivity to C11+ wax products increased slightly with increasing GHSV; on the other hand, it decreased with increasing reaction temperature, system pressure, and solid concentration in a slurry bubble column reactor. It could be concluded that the optimum operating conditions based on the yield of hydrocarbons and wax products were; UG = 6.8-10 cm/s, Cs = 15 wt.%, T = 220-230 °C, P = 2.0 MPa in a slurry bubble column reactor for F-T synthesis.  相似文献   

13.
Copper metallic foam with thermal conductive properties, manufactured by S.C.P.S., has been investigated as a support for catalysts to improve thermal exchange inside the reactor for the endothermic steam reforming of methanol. Thus, we have developed a procedure for the in situ preparation of a Cu0–ZnII/Al2O3 catalyst onto the copper metallic foam. The foam-based Cu0–ZnII/Al2O3 catalyst shows an activity three times as high as commercial catalysts for a conversion of 74% of methanol into hydrogen.  相似文献   

14.
In order to reveal the optimum Co loading, the selective catalytic reduction of NO with C3H6 over Co/Al2O3 catalyst was studied in a systematic fashion by varying the amount of cobalt oxide. It was found that upon loading a small amount of cobalt oxide (namely 0.5 wt% on a Co metal basis), the combination between Co(II) acetate salt and a high-purity alumina provided an active catalyst in the presence of excess oxygen and water. TPR measurement showed the presence of Co species other than CoAl2O4 spinel in the most excellent performance catalyst, from which the active sites should be produced.  相似文献   

15.
This work investigates the improvement of Ni/Al2O3 catalyst stability by ZrO2 addition for H2 gas production from CH4/CO2 reforming reactions. The initial effect of Ni addition was followed by the effect of increasing operating temperature to 500–700 °C as well as the effect of ZrO2 loading and the promoted catalyst preparation methods by using a feed gas mixture at a CH4:CO2 ratio of 1:1.25. The experimental results showed that a high reaction temperature of 700 °C was favored by an endothermic dry reforming reaction. In this reaction the deactivation of Ni/Al2O3 was mainly due to coke deposition. This deactivation was evidently inhibited by ZrO2, as it enhances dissociation of CO2 forming oxygen intermediates near the contact between ZrO2 and nickel where the deposited coke is gasified afterwards. The texture of the catalyst or BET surface area was affected by the catalyst preparation method. The change of the catalyst texture resulted from the formation of ZrO2–Al2O3 composite and the plugging of Al2O3 pore by ZrO2. The 15% Ni/10% ZrO2/Al2O3 co-impregnated catalyst showed a higher BET surface area and catalytic activity than the sequentially impregnated catalyst whereas coke inhibition capability of the promoted catalysts prepared by either method was comparable. Further study on long-term catalyst stability should be made.  相似文献   

16.
The partial oxidation of CH3OH to CO2 and H2 over a Cu/ZnO/Al2O3 catalyst has been studied by temperature-programmed oxidation (TPO) using N2O and O2 as the oxidant. Post-reaction analysis of the adsorbate composition of the surface of the catalyst was determined by temperature-programmed desorption (TPD). The temperature dependence of the composition of the mixture of products formed by TPO was shown to depend critically on the partial pressure of the oxidant, with the highest partial pressure of oxygen used (10% O2 in He, 101 kPa—the CH3OH partial pressure was 17% throughout), producing marked non-Arrhenius fluctuations on temperature programming. Unsurprisingly, therefore, the adsorbate composition of the catalyst revealed by post-reaction TPD was also found to be determined by the partial pressure of the oxidant. Using high partial pressures of oxidant (5% and 10% O2 in He, 101 kPa), the only adsorbate detected was the bidentate formate species adsorbed on Cu. Lowering the oxygen partial pressure to 2% in He (101 kPa) revealed a catalyst surface on which the bidentate formate on Cu was the dominant intermediate with the formate on Al2O3 also being present. A further lowering of the partial pressure of the oxidant, obtained by using N2O as the oxidant (2% N2O in He, 101 kPa), resulted in a surface on which the formate adsorbed on ZnO was the dominant adsorbate with only a small coverage of the Cu by the bidentate formate.  相似文献   

17.
Previous results on different catalysts revealed that methylcyclohexane underwent selective dehydrogenation to form toluene and hydrogen. This reaction system is a useful prototype model for similar systems in the chemical process and petroleum refining industries, such as hydrotreating for aromatics reduction, desulfurization, denitrogenation, reforming for aromatics reduction, dehydrocyclization, and fuel processing of liquid hydrocarbons in the generation of hydrogen feed for fuel cells. Dehydrogenation of methylcyclohexane to toluene is a method for hydrogen storage in the form of liquid organic hydrides. The efficiency of the dehydrogenation reactions and the quantity of products depend on the catalyst used. In the case of the dehydrogenation of methylcyclohexane to toluene, a metallic function, usually platinum is required as the catalyst. Although, there were some different catalysts used by former researchers, there was almost no investigation about the use of the nickel catalysts for this reaction. From the economical point of view, more efficient catalysts and reaction engineering methods should be developed for these reactions.In this work dehydrogenation of methylcyclohexane was performed in a fixed-bed catalytic reactor in the temperature range of 653–713 K on prepared Ni/Al2O3 catalysts having 5, 10, 15 and 20 wt.% Ni content. The inlet flowrates of methylcyclohexane and hydrogen to the reactor were changed by keeping one of them constant in order to investigate their effects on this reaction.  相似文献   

18.
Pt–Co/Al2O3 catalysts were prepared with different Co/Pt weight ratios (0.3–1.8) and their performances for preferential oxidation of CO (PROX) were tested. The activity of the catalyst increased with Co/Pt weight ratio due to the increase of the area of active phase by interaction between Pt and Co species. The 13-layered micro-channel reactor was prepared by stacking the plates coated with Pt–Co/Al2O3 catalyst. The reactor was divided into three parts (inlet, middle, and outlet) to evaluate the performance of each part. Most of O2 supplied was depleted at the inlet part and the temperature gradient of the reactor occurred due to the high exothermicity of oxidations of CO and hydrogen. In order to prevent hot spot and temperature gradient, the reactor with non-uniform distribution of the catalyst (partially coating the catalyst on the channels) was prepared. The prepared reactor showed uniform temperature distribution and exhibited excellent performance for PROX.  相似文献   

19.
Three Ni/ZrO2–SO4=/Al2O3 catalysts with different concentrations of platinum (0.2, 0.3 and 0.4 wt%) were prepare and tested for n-butane isomerization reaction at 338 K, in absence and in presence of hydrogen. The results shown that, at low temperature, platinum contributes to the olefin or butyl ion formation and the reaction follows a bimolecular pathway. However, when the reaction occurs in the presence of hydrogen, the formation of butyl ions is inhibited. The main feature of platinum addition is the stabilization of the catalytic activity, which is indicated by the slow deactivation constants compared to that of the unpromoted catalyst.  相似文献   

20.
Catalytic steam reforming of bio-oil was investigated in a fixed bed tubular reactor for production of hydrogen. Two series of nickel/alumina (Ni/Al2O3) supported catalysts promoted with ruthenium (Ru) and magnesium (Mg) were prepared. Each catalyst of the first series (Ru–Ni/Al2O3) was prepared by co-impregnation of nickel and ruthenium on alumina. They were examined to investigate the effect of adding ruthenium on the performance of the catalysts for hydrogen production. The effect of the temperature, the most effective parameter in the steam reforming of bio-oil, on the activity of the catalysts was also investigated. Each catalyst of the second series (Ni–MgO/Al2O3) was prepared by consecutive impregnation using various preparation procedures. They were tested to determine the effect of adding magnesium as well as the effect of the preparation procedure on the outlet gas concentrations. It was shown that in both series, the catalysts were more efficient in hydrogen production as well as carbon conversion than Ni/Al2O3 catalysts. The highest hydrogen yield was 85% which was achieved over Ru–Ni/Al2O3 at 950 °C. It was also found that the effect of adding a small amount of ruthenium was superior to that of nickel on the yield of hydrogen when the nickel content was equal to or greater than 10.7%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号