共查询到15条相似文献,搜索用时 62 毫秒
1.
郭有强 《计算机技术与发展》2007,17(11):74-76,83
算法充分利用以往挖掘过程中的结果,无需再次扫描原数据集,对新增数据集也只扫描一次,即可得到事务更新后的数据集的频繁项集。避免了重新处理已经处理过的数据和多次扫描新增数据集,与其他相关算法相比,减少了算法运行对问,提高了挖掘效率。随着历史数据集的增大,更加显现出本算法的优越性。算法还可以用于解决由于数据集过大而导致的内存不够的Apriori算法的挖掘问题。 相似文献
2.
3.
本文就数据库不变,最小支持度发生变化的情况下,关联规则的维护问题进行研究,提出了一种新的增量式更新算法。 相似文献
4.
关联规则的更新是数据挖掘研究的一个重要内容,能否有效地挖掘出动态事务数据库中的最大频繁项目集是衡量一个关联规则更新算法好坏的关键因素。提出基于FP_tree的最大频繁项目集增量式更新(MFIUP)算法,以处理最小支持度和事务数据库同时发生变化之后相应频繁项目集的更新问题,其中事务数据库的变化同时包括增加和减少两种情况,并对其优越性进行了分析和测试。 相似文献
5.
一种新的关联规则增量式更新算法 总被引:8,自引:0,他引:8
首先提出了一个新的概念-后备频繁项目集,其次给出了一种新的增量式更新算法NEWFUP,最后介绍了在某中小型商业企业的事务数据库中该算法的实现。 相似文献
6.
数据挖掘的一个重要方面是挖掘关联规则,目前已提出了包括经典算法Apriori在内的许多算法,而在实际关联规则的挖掘过程中,用户将需要不断调整用于描述用户兴趣程度的阈值:最小支持度和最小置信度。如何维护已发现的关联规则变得至关重要。该文提出的GIUA算法解决了在数据库D不变的情况下,最小支持度和最小置信度发生变化时关联规则的维护问题,最大效率地利用原有结果,通过动态分组将连接步和修剪步的循环减到最少,并尽可能地将挖掘过程并行化。 相似文献
7.
8.
一个高效的关联规则增量式更新算法 总被引:9,自引:0,他引:9
针对关联规则的维护问题,设计了一个高效的增量式更新算法FIUA,并将FIUA和已有的IUA算法进行了比较,并通过实验证实了FIUA算法的高效性。 相似文献
9.
姜玉泉 《计算机工程与应用》2003,39(24):187-188,201
发现最大频繁项目集是多种数据挖掘应用中的关键问题,目前已经提出了许多算法用于发现最大频繁项目集,而对最大频繁项目集维护问题的研究工作却不多,因此,迫切需要设计高效的算法来更新、维护和管理已挖掘出来的最大频繁项目集,为此,该文提出了一种快速的增量式更新最大频繁项目集算法IUAFI,并举例说明了算法的执行过程。 相似文献
10.
数据库的更新会引起数据库中的关联规则的更新,找出更新后的所有的频繁项目集,也就能生成更新后的关联规则,因此关联规则的更新就转化为频繁项目集的更新。UWEP算法 利用以前的挖掘结果来减少挖掘新的频繁项目集的开销,采用了一些优化技术来减少数据库的扫描次数和候选项目集的数量,但UWEP算法只能处理增加新事务的情况。本文提出 的UWEP2算法是UWEP算法的扩展,能处理数据库中事务的增加、删除、修改等情况。我们将它与另一种更新频繁项目集的算法FUP2比较,实验显示,UWEP2算法比FUP2算法生成的候选项目集要少,性能要高。 相似文献
11.
针对目前大数据快速增加的环境下,海量数据的频繁项集挖掘在实际中所面临的增量更新问题,在频繁项超度量树算法(frequent items ultrametric trees,FIUT)的基础上,引入MapReduce并行编程模型,提出了一种针对频繁项集增量更新的面向大数据的并行算法。该算法通过检查频繁超度量树叶子节点的支持度来确定频繁项集,同时采用准频繁项集的策略来优化并行计算过程,从而提高数据挖掘效率。实验结果显示,所提出的算法能快速完成扫描和更新数据,具有较好的可扩展性,适合于在动态增长的大数据环境中进行关联规则相关数据挖掘。 相似文献
12.
目前已提出了许多基于Apriori算法思想的频繁项目集挖掘算法,这些算法可以有效地挖掘出事务数据库中的短频繁项目集,但对于长频繁项目集的挖掘而言,其性能将明显下降.为此,提出了一种频繁闭项目集挖掘算法MFCIA,该算法可以有效地挖掘出事务数据库中所有的频繁项目集,并对其更新问题进行了研究,提出了一种相应的频繁闭项目集增量式更新算法UMFCIA,该算法将充分利用先前的挖掘结果来节省发现新的频繁闭项目集的时间开销.实验结果表明算法MFCIA是有效可行的. 相似文献
13.
14.
一种基于频繁模式树的约束最大频繁项目集挖掘及其更新算法 总被引:7,自引:2,他引:7
目前已提出了许多快速的关联规则挖掘算法,实际上用户只关心部分关联规则,如他们仅想 知道包含指定项目的规则.当这些约束被用于数据预处理或将它结合到数据挖掘算法中去时 ,可以显著减少算法的执行时间.为此,考虑了一类包含或不包含某些项目的布尔表达式约 束条件,提出了一种快速的基于FP-tree的约束最大频繁项目集挖掘算法CMFIMA,并对其更 新问题进行了研究,提出了一种增量式更新约束最大频繁项目集挖掘算法CMFIUA. 相似文献
15.
提出了一种基于堆栈的频繁闭项集挖掘算法SBFCI(Stack Based Frequent Closed Itemsets Generation),该算法采用栈技术避免了以往基于FP—tree的算法需对每个后缀模式递归构造FP—tree,并在上挖掘的弊端。从而大幅缩减了生成频繁闭项集的时间与空间开销。 相似文献