首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper studies two hybrid power systems for vehicle applications: a fuel cell-battery hybrid powertrain and a fuel cell-ultracapacitor hybrid powertrain. First, the characteristics of fuel cell, battery, and ultracapacitor as power sources are summarized. Then the configurations of the two types of hybrid fuel cell powertrains are presented. Finally, example hybrid powertrains are designed and simulated using ADVISOR. The simulation results indicate that ultracapacitors can more effectively assist the fuel cell to meet the vehicle power demand and help achieve a better performance and a higher fuel economy.  相似文献   

2.
With the increased emphasis on improving fuel economy and reducing emissions, hybrid electric vehicles (HEVs) have emerged as very strong candidates to achieve these goals. The power-split hybrid system, which is a complex hybrid powertrain, exhibits great potential to improve fuel economy by determining the most efficient regions for engine operation and thereby high-voltage (HV) battery operation to achieve overall vehicle efficiency optimization. To control and maintain the actual HV battery power, a sophisticated control system is essential, which controls engine power and thereby engine speed to achieve the desired HV battery maintenance power. Conventional approaches use proportional-integral (PI) control systems to control the actual HV battery power in power-split HEV, which can sometimes result in either overshoots of engine speed and power or degraded response and settling times due to the nonlinearity of the power-split hybrid system. We have developed a novel approach to intelligently controlling engine power and speed behavior in a power-split HEV using the fuzzy control paradigm for better performances. To the best of our knowledge, this is the first reported use of the fuzzy control method to control engine power and speed of a power-split HEV in the applied automotive field. Our approach uses fuzzy gain scheduling to determine appropriate gains for the PI controller based on the system's operating conditions. The improvements include elimination of the overshoots as well as approximate 50% faster response and settling times in comparison with the conventional linear PI control approach. The improved performances are demonstrated through simulations and field experiments using a ford escape hybrid vehicle.  相似文献   

3.
This paper presents a power converter for a fuel cell electric vehicle driving system. A new bidirectional, isolated topology is proposed in consideration of the differing fuel cell characteristics from traditional chemical-power battery and safety requirements. The studied converter has the advantages of high efficiency, simple circuit, and low cost. The detailed design and operating principles are analyzed and described. The simulation and experimental waveforms for the proposed converter are shown to verify its feasibility.  相似文献   

4.
Combining high-energy-density batteries and high-power-density ultracapacitors in fuel cell hybrid electric vehicles (FCHEVs) results in a high-performance, highly efficient, low-size, and light system. Often, the battery is rated with respect to its energy requirement to reduce its volume and mass. This does not prevent deep discharges of the battery, which are critical to the lifetime of the battery. In this paper, the ratings of the battery and ultracapacitors are investigated. Comparisons of the system volume, the system mass, and the lifetime of the battery due to the rating of the energy storage devices are presented. It is concluded that not only should the energy storage devices of a FCHEV be sized by their power and energy requirements, but the battery lifetime should also be considered. Two energy-management strategies, which sufficiently divide the load power between the fuel cell stack, the battery, and the ultracapacitors, are proposed. A charging strategy, which charges the energy-storage devices due to the conditions of the FCHEV, is also proposed. The analysis provides recommendations on the design of the battery and the ultracapacitor energy-storage systems for FCHEVs.  相似文献   

5.
Predictive Reference Signal Generator for Hybrid Electric Vehicles   总被引:1,自引:0,他引:1  
A novel model-based and predictive energy supervisory controller for hybrid electric vehicles (HEVs) is presented. Its objective is to minimize the fuel consumption (FC) of HEVs using only the information on the current state of charge (SoC) of the battery and data available from a standard onboard navigation system. This objective is achieved using a predictive reference signal generator (pRSG) in combination with a nonpredictive reference tracking controller for the battery SoC. The pRSG computes the desired battery SoC trajectory as a function of vehicle position such that the recuperated energy is maximized despite the constraints on the battery SoC. To compute the SoC reference trajectory, only the topographic profile of the future road segments and the corresponding average traveling speeds must be known. Simulation results of the proposed predictive strategy show substantial improvements in fuel economy in hilly driving profiles, compared with nonpredictive strategies. A parallel HEV is analyzed in this paper. However, the proposed method is independent of the powertrain topology. Therefore, the method is applicable to all types of HEVs.   相似文献   

6.
Fuel cell stacks produce a dc output with a 2:1 variation in output voltage from no-load to full-load. The output voltage of each fuel cell is about 0.4 V at full-load, and several of them are connected in series to construct a stack. An example 100 V fuel cell stack consists of 250 cells in series and to produce 300 V at full-load requires 750 cells stacked in series. Since fuel cells actively convert the supplied fuel to electricity, each cell requires proper distribution of fuel, humidification, coupled with water/thermal management needs. With this added complexity, stacking more cells in series decreases the reliability of the system. For example, in the presence of bad or malperforming cell/cells in a stack, uneven heating coupled with variations in cell voltages may occur. Continuous operation under these conditions may not be possible or the overall stack output power is severely limited. In this paper, a modular fuel cell powered by a modular dc–dc converter is proposed. The proposed concept electrically divides the fuel cell stack into various sections, each powered by a dc–dc converter. The proposed modular fuel cell powered by modular dc–dc converter eliminates many of these disadvantages, resulting in a fault tolerant system. A design example is presented for a 150-W, three-section fuel cell stack and dc–dc converter topology. Experimental results obtained on a 150-W, three-section proton exchange membrane (PEM) fuel cell stack powered by a modular dc–dc converter are discussed.   相似文献   

7.
Although many researchers have investigated the use of different powertrain topologies, component sizes, and control strategies in fuel-cell vehicles, a detailed parametric study of the vehicle types must be conducted before a fair comparison of fuel-cell vehicle types can be performed. This paper compares the near-optimal configurations for three topologies of vehicles: fuel-cell-battery, fuel-cell-ultracapacitor, and fuel-cell-battery-ultracapacitor. The objective function includes performance, fuel economy, and powertrain cost. The vehicle models, including detailed dc/dc converter models, are programmed in Matlab/Simulink for the customized parametric study. A controller variable for each vehicle type is varied in the optimization.  相似文献   

8.
Design of multiple-input power converter for hybrid vehicles   总被引:1,自引:0,他引:1  
This paper deals with designing and sizing of a multiple-input power electronic converter (MIPEC) to be used in an electric vehicle propulsion system that includes a fuel cell (FC) generator and a combined storage unit. The combined storage unit is composed by an ultracapacitors tank (UC) and a battery unit (BU). MIPEC is responsible for power-flow management on-board the vehicle for each mode of operation. Specifications for MIPEC designing come out from many considerations concerning traction drive and reference driving cycle, on-board power source and storage unit characteristics. However, to date sizing and configuration of both storage units and on-board generators are directly related to traction drive and driving profile (i.e., vehicle performances and characteristics) and no relation with power electronic interface is considered during preliminary design. Then, power electronic interface is selected in order to fit traction drive requirements with power source and storage unit characteristics; as a consequence converter mode of operation lacks of optimization, as well dynamic behavior and efficiency cannot be maximized. In this paper, MIPEC design and power source and storage unit selection are achieved at the same project stage according to traction drive requirements. Experimental results on 60-kW power electronic interface are presented.  相似文献   

9.
With hybrid and electric vehicle developments, battery-monitoring systems have to meet the new requirements of the automobile industry. This paper deals with one of them, the battery's ability to start a vehicle, also called battery crankability, through battery-resistance estimation. A fractional-order model obtained by system identification is used to estimate the internal resistance of lead-acid batteries. Fractional-order modeling permits an accurate simulation of the battery electrical behavior with a low number of parameters. Moreover, the high-frequency gain of the fractional model is directly linked to the battery resistance. A resistance-estimation method based on a frequency-invalidation method is, thus, proposed. It is demonstrated that the battery's available power that defines battery crankability is correlated to the battery resistance. Thus, a battery-crankability estimator using the battery resistance is suggested. Validation tests are carried out with various batteries. This estimator cannot be embedded in a microcontroller due to the linear-matrix-inequality-based optimization algorithm in the invalidation-model method used. A simplified algorithm is finally proposed, and its efficiency is proved.   相似文献   

10.
An online optimization procedure provides the parameters of a nonlinear battery model by taking into account a few minutes of measured current–voltage data. Within a defined range in terms of charge current, state of charge (SOC), and duration of charge and discharge events, the model is able to capture the relevant battery dynamics and predict the behavior for the next few minutes. From the battery behavior during specific events, the state of the battery can be revealed, which is defined as the state of function. Validation, which is carried out on measured current–voltage profiles, shows the accuracy of prediction during the high-rate partial SOC operation. Even with the data measured during a city drive within a microhybrid electrical vehicle, the method is able to predict the voltage level during high-rate discharge pulses (cranking).   相似文献   

11.
通过对燃料电池和锂离子电池这两种新型动力电池性能特点的分析及现状介绍,指出了我国汽车工业的发展趋势即优先发展纯电动汽车,其中心技术就是动力电池;同时,分析了新型动力电池技术应用市场,展望了其广阔的发展前景.  相似文献   

12.
电动汽车用充电器与驱动器一体化拓扑研究   总被引:1,自引:0,他引:1       下载免费PDF全文
摘要:针对电动汽车驱动与充电系统分离所带来的诸多问题,提出了一种电动汽车驱动和充电系统一体化电力电子拓扑结构及相应控制策略, 该拓扑正向工作时驱动电机为电动状态、反向工作时给蓄电池充电为充电状态。一体化拓扑在充电时共用驱动系统的主电路和控制电路,无需额外增加AC/DC和DC/DC充电器,提高了功率密度、降低了产品成本、降低了系统故障率、减少了安装空间等,解决了传统电动汽车驱动与充电分离带来的问题。最后针对提出的一体化拓扑和控制策略进行了实验验证,试验中所采用电机型号为80CB050C,结果表明该一体化拓扑在充电实验时直流母线电压纹波在6.9%附近,经过Buck电路中电机绕组进一步滤波后,充电电压及电流纹波基本稳定在0.3%以内,验证了所提方法的正确性和可行性,具有一定的应用前景和实用价值。  相似文献   

13.
Energy-storage systems (ESSs) play an important role in electric vehicle (EV) and hybrid EV (HEV) applications. In the system, an ultracapacitor is preferred for high power buffer and regenerative braking energy storage because it has the advantages of high power density, long life cycles, and high efficiency. While in the high-voltage application, the ultracapacitors are employed in series, and the voltage unbalance issue must be taken care of. This paper presents a novel circuit for equalizing a series ultracapacitor stack, which is based on a dc-dc converter. The proposed voltage-equalization circuit derives energy from the series ultracapacitor stack and transfers them to the weakest ultracapacitor cell. The equalizer balances the whole stack by sequentially compensating the weak ultracapacitor cells. Unlike previous methods for battery-storage systems, which include complex circuit detecting and comparing the voltages of capacitor cells, the novel equalizer can realize autonomic voltage equalization without voltage detection and comparison, and it is more efficient with the soft switching method, which is a benefit for high-power applications in EV/HEV. The simulation and experiment results validate the feasibility of the proposed equalization circuits.  相似文献   

14.
燃料电池蓄电池混合供电系统   总被引:1,自引:0,他引:1  
燃料电池是一种清洁、环保的可替代能源,但昂贵的价格限制了其推广。本文结合燃料电池、蓄电池的优点,提出燃料电池与蓄电池混合供电方式,降低系统成本。为了减小输入电流纹波延长电池使用寿命,变换器均采取交错并联拓扑。文中详细分析了系统工作原理及其控制方式,仿真结果验证了系统设计方案的可行性。  相似文献   

15.
The sodium–nickel chloride battery, commonly known as ZEBRA, has been used for an experimental electric vehicle (EV). These batteries are cheaper than Li-ion cells and have a comparable specific energy (in watt–hours per kilogram), but one important limitation is their poor specific power (in watts per kilogram). The main objective of this paper is to demonstrate experimentally that the combination of ZEBRA batteries and ultracapacitors (UCAPs) can solve the lack of specific power, allowing an excellent performance in both acceleration and regenerative braking in an EV. The UCAP system was connected to the ZEBRA battery and to the traction inverter through a buck–boost-type dc–dc converter, which manages the energy flow with the help of DSP controllers. The vehicle uses a brushless dc motor with a nominal power of 32 kW and a peak power of 53 kW. The control system measures and stores the following parameters: battery voltage, car speed to adjust the energy stored in the UCAPs, instantaneous currents in both terminals (battery and UCAPs), and present voltage of the UCAP. The increase in range with UCAPs results in more than 16% in city tests, where the application of this type of vehicle is being oriented. The results also show that this alternative is cheaper than Li-ion powered electric cars.   相似文献   

16.
A multilevel modular capacitor-clamped dc–dc converter (MMCCC) will be presented in this paper with some of its advantageous features. By virtue of the modular nature of the converter, it is possible to integrate multiple loads and sources with the converter at the same time. The modular construction of the MMCCC topology provides autotransformer-like taps in the circuit, and depending on the conversion ratio of the converter, it becomes possible to connect several dc sources and loads at these taps. The modularity of the new converter is not limited to only this dc transformer (auto) like operation, but also provides redundancy and fault bypass capability in the circuit. Using the modularity feature, some redundant modules can be operated in bypass state, and during some faults, these redundant modules can be used to replace a faulty module to maintain an uninterrupted operation. Moreover, by obtaining a flexible conversion ratio, the MMCCC converter can transfer power in both directions. Thus, this MMCCC topology could be a solution to establish a power management system among multiple sources and loads having different operating voltages.   相似文献   

17.
In this paper, a new three-phase current-fed push–pull dc–dc converter is proposed. This converter uses a high-frequency three-phase transformer that provides galvanic isolation between the power source and the load. The three active switches are connected to the same reference, which simplifies the gate drive circuitry. Reduction of the input current ripple and the output voltage ripple is achieved by means of an inductor and a capacitor, whose volumes are smaller than in equivalent single-phase topologies. The three-phase dc–dc conversion also helps in loss distribution, allowing the use of lower cost switches. These characteristics make this converter suitable for applications where low-voltage power sources are used and the associated currents are high, such as in fuel cells, photovoltaic arrays, and batteries. The theoretical analysis, a simplified design example, and the experimental results for a 1-kW prototype will be presented for two operation regions. The prototype was designed for a switching frequency of 40 kHz, an input voltage of 120 V, and an output voltage of 400 V.   相似文献   

18.
康丽萍  李海波 《移动信息》2023,45(11):216-218
文中探讨了计算机大数据在新能源汽车领域中的应用。首先,从车辆性能评估的角度出发,指出计算机大数据可以通过收集和分析车辆数据,提供全面的性能评估和反馈,以促进汽车制造技术的进步。然后,从电池寿命预测的角度分析,强调计算机大数据可以根据大量的电池数据和车辆运行数据,以预测电池寿命并提供优化策略,延长电池使用寿命,提高电动汽车的可靠性。最后,从充电设施优化的角度分析,强调计算机大数据可以通过分析充电桩分布、需求预测和充电行为等,优化充电设施的布局和调度,提升充电效率和用户体验。计算机大数据在新能源汽车领域中的应用具有广阔的发展前景,可以为能源利用优化、驾驶行为分析、性能评估等提供支持,推动新能源汽车行业的可持续发展。  相似文献   

19.
Clustering is one of the essential operations in wireless sensor network (WSN) to ensure organized data aggregation followed by energy efficiency. However, obtaining optimal clustering performance is yet an unsolved problem in WSN. Review of existing approaches towards cluster optimization shows that effective balance between energy efficiency and topology control is still missing. Therefore, the proposed system presents a unique topology control mechanism using a novel concept of interstellar orientation toward optimizing the clustering performance in WSN. Adopting an analytical research methodology, the proposed system introduces two interstellar‐based topology control system, which targets the maximum saving of resource consumption of the cluster head. The simulated outcome of the study shows that the proposed topology control system offers significant energy conservation performance in comparison to the existing hierarchical clustering scheme in WSN.  相似文献   

20.
Nissan Motor Co., Ltd, has delivered the New X-TRAIL FCV 2005 Year Model to customers in April 2006 in Japan, in which a newly developed in-house fuel cell stack and 70-MPa high-pressure hydrogen storage system are installed. For fuel cell vehicles, not only the fuel cell system and the hydrogen storage system but also the high-voltage system is very important, such as a traction motor to propel the vehicle, motors that drive some devices for the fuel cell system, a second battery that stores braking energy and assists the acceleration, inverters which supply alternating current to the prescribed motors, and converters which change voltage generated by the fuel cell stack to the specific level for each subsystems to operate. X-TRAIL FCV 2005MY has increased the performance of driving range and acceleration compared to 2003MY. We have practiced using new technologies to reduce the size reduction of the high-voltage system to achieve these performance improvements, but it still needs many improvements to make fuel cell vehicles popular to the market  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号