首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Capacitation of spermatozoa, a complex process occurring after sperm ejaculation, is required to obtain fertilization of the oocyte in vivo and in vitro. Although most of the biochemical/ biophysical events that occur during capacitation in vitro have been characterized, the molecular mechanisms underlying these complex events are still obscure. Increases of intracellular free Ca2+ concentrations ([Ca2+]i) and protein tyrosine phosphorylation have previously been demonstrated during in vitro capacitation of human spermatozoa. In the present study we investigated the relationship between extracellular/intracellular Ca2+, protein tyrosine phosphorylation, and tyrosine kinase and phosphatase activities during sperm capacitation. We report that the increase in tyrosine phosphorylation of several protein bands that occurs during sperm capacitation is independent of the presence of Ca2+ in the external medium and, at least partially, of the increase in [Ca2+]i occurring during the process. Indeed, the spontaneous increase in phosphorylation was still present in Ca(2+)-free/EGTA-containing-medium and in the presence of the intracellular Ca2+ chelator BAPTA/AM. Moreover, phosphorylation of proteins and protein tyrosine kinase (PTK) activity was enhanced if spermatozoa were incubated in Ca(2+)-free medium, suggesting the presence of Ca(2+)-inhibited tyrosine kinase(s) in human sperm. This hypothesis is further substantiated by the lower tyrosine phosphorylation observed after incubation with the ionophore A23187 and the endoplasmic Ca(2+)-ATPase inhibitor thapsigargin, which promote Ca2+ influx in human sperm. The ability of the cells to undergo acrosome reaction in response to progesterone, which can be considered a functional endpoint of capacitation, was highly compromised when spermatozoa were incubated in Ca(2+)-free medium or in the presence of EGTA, confirming that Ca2+ is required for sperm capacitation. Conversely, in the presence of erbstatin, a inhibitor of tyrosine kinase activity, which blunts tyrosine phosphorylation during capacitation, response to progesterone was maintained, suggesting that tyrosine phosphorylation must be kept at a low level (physiologically by the presence of Ca2+ in the external medium, or pharmacologically by the presence of erbstatin) in order to obtain response to progesterone. This mechanism may be important in vivo during sperm transit in the female genital tract to ensure appropriate timing of full capacitation in the proximity of the oocyte.  相似文献   

2.
Carbachol-stimulated insulin release in the RINm5F cell is associated with elevation of the cytosolic Ca2+ concentration ([Ca2+]i) through mobilization of Ca2+ from thapsigargin-sensitive intracellular stores and with the generation of diacylglycerol (DAG). Thus carbachol activates phospholipase C, and this was thought to be the means by which it stimulates insulin secretion. However, when the elevation of [Ca2+]i was blocked by thapsigargin, the effect of carbachol to stimulate insulin release was unchanged. Thus the effect of carbachol to increase [Ca2+]i was dissociated from the stimulation of release. When the role of protein kinase C (PKC) was examined, carbachol-stimulated insulin release was found to be unaffected by phorbol ester-induced downregulation of PKC, using 12-O-tetradecanoylphorbol-13-acetate (TPA), and by the PKC inhibitors staurosporine, bisindolylmaleimide, and 1-O-hexadecyl-2-O-methylglycerol (AMG-C16). These treatments abolished the stimulation of release by TPA. Thus the carbachol activation of PKC appeared also to be dissociated from the stimulation of insulin release. However, when the activation of several different PKC isozymes was studied, an atypical PKC isozyme, zeta, was found to be translocated by carbachol. By Western blotting analysis, carbachol selectively translocated the conventional PKC isozymes alpha and beta (the activation of which is dependent on Ca2+ and DAG) from the cytosol to the membrane. Carbachol also translocated the atypical PKC isozyme zeta, which is insensitive to Ca2+, DAG, and phorbol esters. The PKC inhibitors staurosporine, bisindolylmaleimide, and AMG-C16 blocked the stimulated translocation of PKC-alpha and -beta, but not that of PKC-zeta. Prolonged treatment of the cells with TPA downregulated PKC-alpha and -beta, but not PKC-zeta. Under all these conditions, carbachol-stimulated insulin release was unaffected. However, a pseudosubstrate peptide inhibitor specific for PKC-zeta inhibited the translocation of PKC-zeta and 70% of the carbachol-stimulated insulin secretion. The data indicate that carbachol-stimulated insulin release in RINm5F cells is mediated to a large degree by the activation of the atypical PKC isozyme zeta.  相似文献   

3.
A high-speed imaging technique was used to investigate the effects of inhibitors and activators of protein kinase C (PKC) on the [Ca2+]i transients and contraction of fura-2 loaded rat ventricular cardiac myocytes. The amplitude of the [Ca2+]i transient was reduced following treatment with 100 nM phorbol 12,13-dibutyrate (PDBu), whereas the PKC inhibitors staurosporine (0.5 microM) and calphostin C (10 microM) increased [Ca2+]i transient amplitude, elevated basal [Ca2+]i and slowed the decay of the [Ca2+]i transient. These changes were paralleled by similar alterations in the rate and extent of cell shortening. The activity of nitrendipine-sensitive Ca2+ channels was monitored indirectly as the rate of Mn2+ quench of cytosolic fura-2 in electrically-paced cells. PDBu reduced Mn2+ influx by six-fold, whereas staurosporine and calphostin C increased the influx rate by eight-fold and seven-fold over basal quench, respectively. The caffeine releasable Ca2+ pool was reduced in the presence of PDBu and increased transiently in presence of staurosporine. The effects of PKC activation and inhibition on sarcoplasmic reticulum Ca2+ content may be secondary to alterations of sarcolemmal Ca2+ influx. However, the PKC inhibitors also decreased the rate of sarcoplasmic reticulum Ca2+ uptake in permeabilized myocytes, suggesting that a direct effect of PKC on the sarcoplasmic reticulum may contribute to the prolongation of the [Ca2+]i transient under these conditions. The present work demonstrates that basal PKC activity has a potent depressant effect, mediated primarily through inhibition of sarcolemmal Ca2+ influx, which may play a key role in setting the basal tone of cardiac muscle.  相似文献   

4.
Spermatozoa from oligozoospermic subjects are characterized by a reduced in vitro ability to penetrate hamster oocytes and by a decreased responsiveness to physiological stimuli that trigger the acrosome reaction. One of the first steps in the induction of the acrosome reaction is an increase of intracellular free calcium concentrations ([Ca2+]i). It has been recently shown that progesterone (P) is able to increase [Ca2+]i in capacitated human sperm at concentrations similar to those found in follicular fluid. We evaluated sperm [Ca2+]i increase in response to P (0.1 micrograms/ml) in 19 normo- and 17 oligozoospermic subjects. The average percentage of [Ca2+]i increase over the basal level was significantly lower in spermatozoa from oligozoospermic subjects when compared to normozoospermic subjects (138.7 +/- 8.22% increase in oligo- versus 263.3 +/- 39.7% increase in normozoospermic subjects; P < 0.001). Progesterone-stimulated [Ca2+]i increase was significantly correlated with sperm motility (r = 0.54), sperm concentration (r = 0.96), and sperm morphology (% of normal forms) (r = 0.49). In addition P induced a significant increase of acrosome-reacted spermatozoa in normospermic patients (n = 10), whereas no significant effect was observed in spermatozoa from oligozoospermic men (n = 7). Taken together, these results indicate that spermatozoa from oligozoospermic men have a reduced ability to initiate the cascade of events that lead to the acrosome reaction in response to a physiological stimulus, such as P, and might contribute to explaining the reduced fertilizing capacity of these patients.  相似文献   

5.
The heparin-binding protein vascular endothelial growth factor (VEGF) is a highly specific growth factor for endothelial cells. VEGF binds to specific tyrosine kinase receptors, which mediate intracellular signaling. We investigated 2 hypotheses: (1) VEGF affects intracellular calcium [Ca2+]i regulation and [Ca2+]i-dependent messenger systems; and (2) these mechanisms are important for VEGF's proliferative effects. [Ca2+]i was measured in human umbilical vein endothelial cells using fura-2 and fluo-3. Protein kinase C (PKC) activity was measured by histone-like pseudosubstrate phosphorylation. PKC isoform distribution was observed with confocal microscopy and Western blot. Inhibition of PKC isoforms was assessed by specific antisense oligonucleotides (ODN) for the PKC isoforms. VEGF (10 ng/mL) induced a transient increase in [Ca2+]i followed by a sustained elevation. The sustained [Ca2+]i plateau was abolished by EGTA. Pertussis toxin also abolished the plateau phase, whereas the initial peak was not affected. The PKC isoforms alpha, delta, epsilon, and zeta were identified in endothelial cells. VEGF induced a translocation of PKC-alpha and PKC-zeta toward the nucleus and the perinuclear area, whereas cellular distribution of PKC-delta and PKC-epsilon was not influenced. Cell exposure to TPA led to a down-regulation of PKC-alpha and reduced the proliferative effect of VEGF. VEGF-induced endothelial cell proliferation also was reduced by the PKC inhibitors staurosporine and calphostin C. Specific down-regulation of PKC-alpha and PKC-zeta with antisense ODN reduced the proliferative effect of VEGF significantly. Our data show that VEGF induces initial and sustained Ca2+ influx. VEGF leads to the translocation of the [Ca2+]i-sensitive PKC isoform alpha and the atypical PKC isoform zeta. Antisense ODN for these PKC isoforms block VEGF-induced proliferation. These findings suggest that PKC isoforms alpha and zeta are important for VEGF's angiogenic effects.  相似文献   

6.
The progesterone-initiated human sperm acrosome reaction (AR) requires a rise in intracellular Ca2+ ([Ca2+]i), extracellular Cl- and apparently increased Cl- flux through a unique steroid receptor/Cl- channel resembling but not identical to a GABA(A)/Cl- channel complex. The present study uses fura-2 loaded human sperm, GABA(A)/Cl- channel blockers (picrotoxin and pregnenolone sulfate) and Cl(-)-containing and Cl(-)-deficient media to determine whether the progesterone-mediated increase in [Ca2+]i is dependent on the Cl- requirement. There was no significant difference between the progesterone-mediated increases of [Ca2+]i obtained in Cl(-)-containing and Cl(-)-deficient media. Picrotoxin did not significantly inhibit the progesterone-mediated increase in [Ca2+]i, and pregnenolone sulfate increased [Ca2+]i to the same extent as progesterone. These results strongly suggest that the increase in [Ca2+]i essential to the AR is independent of the AR Cl- requirement and could be explained by the existence of two different sperm plasma membrane progesterone receptors.  相似文献   

7.
Angiotensin II (Ang II) induces vascular smooth muscle cell (VSMC) growth by activating Gq-protein-coupled AT1 receptors, which leads to elevation of cytosolic Ca2+ ([Ca2+]i) and activation of protein kinase C (PKC) and mitogen-activated protein kinases. To assess the link between these Ang II-induced signaling events, we examined the effect of Ang II on the proline-rich tyrosine kinase (PYK2), previously found to be activated by a variety of stimuli that increase [Ca2+]i or activate PKC. PYK2 distribution was demonstrated in rat aortic tissue and in cultured VSMC by immunohistochemistry, revealing a cytosolic distribution distinct from smooth muscle alpha-actin, focal adhesion kinase, or paxillin. The involvement of PYK2 in Ang II signaling was measured by immunoprecipitation and immune complex kinase assays. Treatment of quiescent VSMC with Ang II resulted in a concentration- and time-dependent increase in PYK2 tyrosine phosphorylation and kinase activity in PYK2 immunoprecipitates. PYK2 phosphorylation was inhibited by AT1 receptor blockade and was attenuated by downregulation of PKC or the chelation of [Ca2+]i. Treatment with either phorbol ester or Ca2+ ionophore also increased PYK2 phosphorylation, suggesting that PKC activation and/or increased [Ca2+]i are both necessary and sufficient to activate PYK2. Activation of PYK2 by Ang II was also associated with increased PYK2-src complex formation, suggesting that PYK2 activation represents a potential link between Ang II-stimulated [Ca2+]i and PKC activation with downstream signaling events such as mitogen-activated protein kinase activation involved in the regulation of VSMC growth.  相似文献   

8.
The effect of glucocorticoid(GC) on peak cytosolic free calcium net increment (delta[Ca2+]i) induced by high-K+ was detected with MiraCal Image System. The main results were as follows: (1) Corticosterone(B) could inhibit delta[Ca2+]i in a time-dependent and concentration-dependent manner. (2) The inhibitory effect of B could be mimicked by bovine-serum albumin conjugated corticosterone (B-BSA) also in a dose-dependent manner. (3) G-protein inhibitor, either PTX or GDP beta S significantly reduced the inhibitory effect of B and B-BSA on delta[Ca2+]i (4) PMA, a stimulator for protein kinase C(PKC), could inhibit delta[Ca2+]i. (5) Although the inhibitors of PKC, chelerythrine chloride and bisindolylamide I per se had no influence on delta[Ca2+]i, but they significantly antagonized the inhibitory effect of B and B-BSA on delta[Ca2+]i. It is postulated that GC inhibit delta[Ca2+]i induced by high-K+ through a membrane mechanism and by a pathway involving G-protein and PKC.  相似文献   

9.
Reactive oxygen species (ROS) mediated modulation of signal transduction pathways represent an important mechanism of cell injury and barrier dysfunction leading to the development of vascular disorders. Towards understanding the role of ROS in vascular dysfunction, we investigated the effect of diperoxovanadate (DPV), derived from mixing hydrogen peroxide and vanadate, on the activation of phospholipase D (PLD) in bovine pulmonary artery endothelial cells (BPAECs). Addition of DPV to BPAECs in the presence of .05% butanol resulted in an accumulation of [32P] phosphatidylbutanol (PBt) in a dose- and time-dependent manner. DPV also caused an increase in tyrosine phosphorylation of several protein bands (Mr 20-200 kD), as determined by Western blot analysis with antiphosphotyrosine antibodies. The DPV-induced [32P] PBt-accumulation was inhibited by putative tyrosine kinase inhibitors such as genistein, herbimycin, tyrphostin and by chelation of Ca2+ with either EGTA or BAPTA, however, pretreatment of BPAECs with the inhibitor PKC bisindolylmaleimide showed minimal inhibition. Also down-regulation of PKC alpha and epsilon, the major isotypes of PKC in BPAECs, by TPA (100 nM, 18 h) did not attenuate the DPV-induced PLD activation. The effects of putative tyrosine kinase and PKC inhibitors were specific as determined by comparing [32P] PBt formation between DPV and TPA. In addition to tyrosine kinase inhibitors, antioxidants such as N-acetylcysteine and pyrrolidine dithiocarbamate also attenuated DPV-induced protein tyrosine phosphorylation and PLD stimulation. These results suggest that oxidation, prevented by reduction with thiol compounds, is involved in DPV-dependent protein tyrosine phosphorylation and PLD activation.  相似文献   

10.
Mastoparan, a tetradecapeptide from wasp venom, stimulated exocytosis in a concentration-dependent manner, which was enhanced by pertussis toxin pre-treatment, in the insulin secreting beta-cell line RINm5F. Mastoparan (3-20 microM) also elevated cytosolic free calcium concentration ([Ca2+]i), a rise that was not attenuated by nitrendipine. Divalent cation-free Krebs-Ringer bicarbonate (KRB) medium with 0.1 mM EGTA nullified the mastoparan-induced increase in [Ca2+]i, suggesting that the peptide increased Ca2+ influx but not through the L-type voltage-dependent Ca2+ channel. Depletion of the intracellular Ca2+ pool did not affect the mastoparan-induced elevation of [Ca2+]i. Remarkably, in divalent cation-free KRB medium with 0.1 mM EGTA and 2 microM thapsigargin in which mastoparan reduced [Ca2+]i, the mastoparan-stimulated insulin release was similar to that in normal Ca(2+)-containing KRB medium. Inhibitors of protein kinase C, such as bisindolylmaleimide, staurosporine, and 1-O-hexadecyl-2-O-methyl-rac-glycerol did not suppress the mastoparan-stimulated insulin release. Mastoparan at 10-20 microM did not increase cellular cAMP levels, nor did mastoparan at 5-10 microM affect [3H]arachidonic acid release. In conclusion, although mastoparan increased [Ca2+]i, this increase was not involved in the stimulation of insulin release. Rather, the data suggest that mastoparan directly stimulates exocytosis in a Ca(2+)-independent manner. As GTP-binding proteins (G proteins) are thought to be involved in the process of exocytosis and as mastoparan is known to exert at least some of its effects by activation of G proteins, an action of mastoparan to activate the putative stimulatory Ge (exocytosis) protein is likely.  相似文献   

11.
Considerable progress has been made recently in elucidating the intracellular signal transduction pathways which couple surface immunoglobulin (sIg) of resting B lymphocytes (BH) to the proliferative cycle. By contrast, nothing is known of the signals which couple the sIg of germinal center (GC) B cells not to mitogenesis but, instead, to the suppression of apoptosis: the present study examines the signaling pathways through which this response is achieved. GC B cells treated with anti-Ig exhibited enhanced phosphorylation on tyrosine for a number substrates: this was accompanied by a transient increase in inositol 1,4,5-trisphosphate, an increase in [Ca2+]i, and translocation of PKC from the cytosol. These changes could be provoked with Abs specific for IgG or IgA, the major sIg on GC B cells. Herbimycin A, an inhibitor of protein tyrosine kinases (PTK), uncoupled sIg on GC B cells from both the increase in [Ca2+]i and the rescue from apoptosis: the latter was only partially blocked by inhibitors of PKC and chelators of intracellular and extracellular Ca2+. These data indicate that not only do PTK link the antigen receptor (AgR) of GC B cells to both phosphatidylinositol (PI)-dependent and -independent routes of survival but also that tyrosine phosphorylation is critical for sIg-mediated rescue of this population from apoptosis. Moreover, despite the distinct functional responses observed following ligation of the AgR of resting BH lymphocytes and GC B cells, anti-Ig initiates a very similar pattern of second messenger change in these populations suggesting that bifurcation must occur at a more distal stage of the signaling process.  相似文献   

12.
Lead characteristically perturbs processes linked to the calcium messenger system. This study was undertaken to determine the role of PKC in the Pb2+ induced rise of [Ca2+]i. [Ca2+]i was measured using the divalent cation indicator, 1,2-bis(2-amino-5-fluorophenoxy) ethane N, N,N',N'-tetraacetic acid (5F-BAPTA) and 19F-NMR in the osteoblast cell line, ROS 17/2.8. Treatment of cells with Pb2+ at 1 and 5 microM produced a rise in [Ca2+]i from a basal level of 125 nM to 170 nM and 230 nM, respectively, while treatment with phorbol 12-myristate 13-acetate (PMA) (10 microM), an activator of PKC, produced a rise in [Ca2+]i to 210 nM. Pretreatment with calphostin C, a potent and highly selective inhibitor of PKC activation failed to produce a change in basal [Ca2+]i and prevented any rise in [Ca2+]i in response to Pb2+. To determine whether Pb2+ acts directly on PKC, we measured the Pb2(+)-dependent activation of phosphatidylserine/diolein-dependent incorporation of 32P from ATP into histone and endogenous TCA precipitable proteins in the 100,000 X g supernatant from homogenized ROS 17/2.8 cells. The free concentrations of Pb2+ and Ca2+ were set using 5F-BAPTA; and [Ca2+] and [Pb2+] in the PKC reaction mixtures were confirmed by 19F-NMR. We found that Pb2+ activates PKC in the range of 10(-11)-10(-7) M, with an activation constant of 1.1 X 10(-10) M, whereas Ca2+ activates PKC in the range from 10(-8) to 10(-3) M, with an activation constant of 3.6 X 10(-7) M. These data suggest that Pb2+ activates PKC in ROS 17/2.8 cells and that Pb2+ activation of PKC mediates the documented rise in [Ca2+]i and, perhaps, other toxic effects of Pb2+.  相似文献   

13.
Although knowledge of IgA Fc receptor (Fc(alpha)R) structure and gene organization has progressed in the past few years, signal transduction pathways elicited by its activation have hardly been studied. Previously, we have demonstrated that mesangial cells (MC) possess Fc(alpha)R stimulation triggers several biologic responses. In this work, we studied the early biochemical signals triggered by Fc(alpha)R stimulation in MC. MC incubation with aggregated IgA (AIgA) elicited a dose-dependent increase in cytosolic Ca2+ ([Ca2+]i). The response was rapid and transient, and slowly fell to the original baseline. Ca2+ mobilization was dependent on the Fc region of the IgA, because Fc, but neither Fab fragment nor carbohydrates, inhibited the [Ca2+] rise. The initial induction of [Ca2+]i rise was due to Ca2+ mobilization from inositol trisphosphate (IP3)-sensitive intracellular stores, while sustained levels were maintained through extracellular Ca2+ influx. Stimulation of Fc(alpha)R also resulted in production of IP3, temporally correlated with Ca2+ mobilization. Protein tyrosine kinase inhibitors abolished [Ca2+]i rise, indicating that tyrosine phosphorylation of some substrates is required for Ca2+ mobilization. Stimulation through Fc(alpha)R gave rise to a marked increase in tyrosine phosphorylation of several proteins, including the 147-kDa band, similar in size to phospholipase C-gamma(1) (PLC-gamma(1)). Tyrosine phosphorylation of PLC-gamma(1) reached a maximum 30 s after stimulation, as determined by immunoprecipitation and Western blot. Collectively, these results indicate that the Fc(alpha)R signaling pathway in MC involves PLC-(gamma(1) activation, IP3 formation, and Ca2+ mobilization, and is linked to activation of tyrosine kinases.  相似文献   

14.
Activation of extracellular signal-regulated protein kinase (ERK) is considered essential for mitogenesis. In the present study, rat liver epithelial WB cells were used to investigate the relative roles of Ca2+, protein kinase C (PKC), and protein tyrosine phosphorylation in mitogenesis and activation of the ERK pathway stimulated by epidermal growth factor (EGF) and angiotensin II (Ang II). The sensitivity of the ERK pathway to Ca2+ was studied by using 1,2-bis (O-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) to chelate intracellular Ca2+ and a low extracellular Ca2+ concentration to prevent Ca2+ influx. Agonist-induced PKC activation was diminished by inhibition of PKC by GF-109203X (bisindolylmaleimide) or by down-regulation of PKC by long-term treatment of the cells with phorbol myristate acetate (PMA). Our results show that although activation of PKC was critical for mitogenesis induced by Ang II or EGF, the initial activation of ERK by both agonists in these cells was essentially independent of PKC activation and was insensitive to Ca2+ mobilization. This is in contrast to the findings in some cell types that exhibit a marked dependency on mobilization of Ca2+ and/or PKC activation. On the other hand, an obligatory tyrosine phosphorylation step for activation of ERK was indicated by the use of protein tyrosine kinase inhibitors, which profoundly inhibited the activation of ERK by EGF, Ang II, and PMA. Additional experiments indicated that tyrosine phosphorylation by a cytosolic tyrosine kinase may represent a general mechanism for G-protein coupled receptor mediated ERK activation.  相似文献   

15.
Rises of intracellular Ca2+ ([Ca2+]i) are key signals for cell division, differentiation, and maturation. Similarly, they are likely to be important for the unique processes of meiosis and spermatogenesis, carried out exclusively by male germ cells. In addition, elevations of [Ca2+]i and intracellular pH (pHi) in mature sperm trigger at least two events obligatory for fertilization: capacitation and acrosome reaction. Evidence implicates the activity of Ca2+ channels modulated by pHi in the origin of these Ca2+ elevations, but their nature remains unexplored, in part because work in individual spermatozoa are hampered by formidable experimental difficulties. Recently, late spermatogenic cells have emerged as a model system for studying aspects relevant for sperm physiology, such as plasmalemmal ion fluxes. Here we describe the first study on the influence of controlled intracellular alkalinization on [Ca2+]i on identified spermatogenic cells from mouse adult testes. In BCECF [(2',7')-bis(carboxymethyl)- (5, 6)-carboxyfluorescein]-AM-loaded spermatogenic cells, a brief (30-60 s) application of 25 mM NH4Cl increased pHi by approximately 1.3 U from a resting pHi approximately 6.65. A steady pHi plateau was maintained during NH4Cl application, with little or no rebound acidification. In fura-2-AM-loaded cells, alkalinization induced a biphasic response composed of an initial [Ca2+]i drop followed by a two- to threefold rise. Maneuvers that inhibit either Ca2+ influx or intracellular Ca2+ release demonstrated that the majority of the Ca2+ rise results from plasma membrane Ca2+ influx, although a small component likely to result from intracellular Ca2+ release was occasionally observed. Ca2+ transients potentiated with repeated NH4Cl applications, gradually obliterating the initial [Ca2+]i drop. The pH-sensitive Ca2+ permeation pathway allows the passage of other divalents (Sr2+, Ba2+, and Mn2+) and is blocked by inorganic Ca2+ channel blockers (Ni2+ and Cd2+), but not by the organic blocker nifedipine. The magnitude of these Ca2+ transients increased as maturation advanced, with the largest responses being recorded in testicular sperm. By extrapolation, these findings suggest that the pH-dependent Ca2+ influx pathway could play significant roles in mature sperm physiology. Its pharmacology and ion selectivity suggests that it corresponds to an ion channel different from the voltage-gated T-type Ca2+ channel also present in spermatogenic cells. We postulate that the Ca2+ permeation pathway regulated by pHi, if present in mature sperm, may be responsible for the dihydropyridine-insensitive Ca2+ influx required for initiating the acrosome reaction and perhaps other important sperm functions.  相似文献   

16.
In a previous paper we presented evidence for a negative regulation of adenylyl cyclase activity by tyrosine protein kinase(s) in the human leukemic T cell line Jurkat. In order to examine this point in non malignant cells, we conducted the present study in human peripheral blood mononuclear cells (PBMC). In these cells, staurosporine, a broad spectrum protein kinase inhibitor, enhanced not only the receptor-mediated, induced by prostaglandin E2 (PGE2), but also the direct (forskolin-induced) stimulation of adenylyl cyclase activity. Herbimycin A, a specific protein tyrosine kinase inhibitor, reproduced only in part the effect of staurosporine, whereas bisindolylmaleimide, the most specific protein kinase C (PKC) inhibitor known at present time, was ineffective. All these observations were made both in the absence and presence of isobutylmethylxanthine, a phosphodiesterase inhibitor, indicating that the effects of staurosporine and herbimycin A on cAMP accumulation were not due to phosphodiesterase inhibition. The calcium ionophore A 23187 also enhanced the PGE2-induced cAMP accumulation, and this effect was not additive to that of staurosporine, but additive to that of herbimycin A. These results confirm and extend those obtained in Jurkat cells. Taken together, they indicate that in human PBMC the adenylyl cyclase activity is negatively regulated by tyrosine kinase(s) and not by PKC, and positively regulated by Ca2+. They also suggest that the major enhancement by staurosporine of the PGE2-induced cAMP accumulation, although chiefly mediated by protein tyrosine kinase inhibition, also depends on another, presently undetermined, effect of the drug simulating that of Ca2+.  相似文献   

17.
Although recent evidence indicated that the production of reactive oxygen species (ROS) by human spermatozoa may be involved in the regulation of capacitation, very little is known about the role of ROS in the acrosome reaction. To address this issue, Percoll-washed spermatozoa were incubated in Ham's F-10 medium in the absence (no capacitation) or presence (capacitation) of fetal cord serum ultrafiltrate (FCSu) or progesterone. The effects of the ROS scavengers, superoxide dismutase (SOD), and catalase were then tested on the acrosome reaction induced by lysophosphatidylcholine (LPC), A23187, and ultrafiltrates from follicular fluid (FFu) and FCSu, as well as on the protein tyrosine phosphorylation associated with this process. 2-Methyl-6-(p-methoxyphenyl)-3,7-dihydroimidazo [1,2-a] pyrazin-3-one (MCLA)-amplified chemiluminescence was used to determine the extracellular superoxide (O2.-) production from spermatozoa. The observations that both SOD and catalase reduced (in the case of LPC) or totally prevented (in the other cases) the acrosome reaction of capacitated spermatozoa and that hydrogen peroxide (H2O2) or ROS generated by the combination of xanthine and xanthine oxidase (O2.-, which dismutates to H2O2) triggered the acrosome reaction indicated the involvement of ROS in this process. In fact, capacitated spermatozoa in which the acrosome reaction was induced by LPC, A23187, and FFu produced more O2.- than noncapacitated spermatozoa treated with the same agents. A23187 and LPC had minor effects on protein tyrosine phosphorylation of noncapacitated spermatozoa. However, these inducers caused a decrease in tyrosine phosphorylation of Triton-soluble proteins (mainly those of 37, 42, and 47 kDa) from capacitated spermatozoa, a decrease more pronounced in the presence of SOD. On the other hand, there was a marked increase in tyrosine phosphorylation of few proteins (70 to 105 kDa) from the Triton-insoluble fraction, which was partly reversed by SOD (in the case of LPC and A23187) or catalase (in the case of A23187), or abolished in the presence of the two antioxidants (in the case of A23187). These data indicate that the acrosome reaction is associated with an extracellular O2.- generation by spermatozoa and that both O2.- and H2O2 may be involved in the regulation of this process. The mechanism by which these ROS act is unknown but may involve tyrosine phosphorylation of sperm proteins.  相似文献   

18.
We investigated the role of 20 kDa myosin light chain (MLC20) phosphorylation in contractions following protein kinase C (PKC) activation by 12-deoxyphorbol-13-isobutyrate (DPB) in rabbit aortae. DPB induced a sustained contraction and phosphorylation of MLC20 independent of a change in cytosolic Ca2+ ([Ca2+]i). Phosphorylation on Ser19 of MLC20, which is a target site of MLC kinase (MLCK), was 9.2 +/- 5.1% and 22.3 +/- 4.9% of the phosphorylation caused by KCl, at 5 and 30 min of application of DPB, respectively. When KCl-precontracted muscles were rinsed with Ca2+-free, EGTA solution, [Ca2+]i rapidly declined, MLC20 was dephosphorylated and the tension decreased. If DPB was present in the Ca2+-free solution, the relaxation and the dephosphorylation of either total MLC20 or Ser19 were inhibited. The phospholipase A2 inhibitor ONO-RS-082 partially antagonized the effects of DPB on the tension and the MLC20 dephosphorylation. In Ca2+-free solution, DPB induced a contraction smaller than that in normal solution without an increase in MLC20 phosphorylation, and the contraction was also sensitive to ONO-RS-082. These results suggest that a part of MLC20 phosphorylation following PKC activation is due to inhibition of MLC20 phosphatase and the phosphorylation is responsible for the contraction. Furthermore, a mechanism independent of [Ca2+]i and phosphorylation may play a significant role in the PKC-dependent contraction. The involvement arachidonic acid is suggested, not only in the inhibition of dephosphorylation but also in the Ca2+-independent regulation of contractile proteins.  相似文献   

19.
In this study we investigated the protein kinase C isoenzymes expressed by human osteoclast-like cells harvested from a giant cell tumor of bone (GCT23 cells), and by freshly isolated rat osteoclasts. Immunoblotting analysis revealed that the -alpha, -delta, and -epsilon, PKC isoforms, but not the -beta isoenzyme, are expressed by GCT23 cells. Immunofluorescence studies demonstrated that PKC-alpha, -delta, and -epsilon are homogeneously expressed by both mononuclear and multinucleated GCT23 cells, as well as by rat osteoclasts. Similar to authentic osteoclasts, GCT23 cells responded to an increase of extracellular Ca2+ concentration ([Ca2+]o) with a dose-dependent elevation of the cytosolic free Ca2+ concentration ([Ca2+]i). An increase of [Ca2+]o stimulated the translocation of PKC-alpha from the cytosolic to the particulate fraction, suggesting the involvement of this isoenzyme in the signal transduction mechanism prompted by stimulation of the [Ca2+]o sensing. By contrast, PKC-delta was not altered by exposure to elevated [Ca2+]o, whereas PKC-epsilon underwent reciprocal translocation, disappearing from the insoluble fraction and increasing in the cytosol. The effects of PKC on GCT23 cell functions were investigated by treatment with phorbol 12-myristate, 13-acetate (PMA). We observed that activation of PKC by PMA failed to affect adhesion onto the substrate, but down-regulated the [Ca2+]o-induced [Ca2+]i increases. The latter effect was specific, since it was reversed by treatment with the PKC inhibitors staurosporine and chelerythrine.  相似文献   

20.
1. Although stimulation of mouse RAW 264.7 macrophages by UTP elicits a rapid increase in intracellular free Ca2+ ([Ca2+]i), phosphoinositide (PI) turnover, and arachidonic acid (AA) release, the causal relationship between these signalling pathways is still unclear. In the present study, we investigated the involvement of phosphoinositide-dependent phospholipase C (PI-PLC) activation, Ca2+ increase and protein kinase activation in UTP-induced AA release. The effects of stimulating RAW 264.7 cells with thapsigargin, which cannot activate the inositol phosphate (IP) cascade, but results in the release of sequestered Ca2+ and an influx of extracellular Ca2+, was compared with the effects of UTP stimulation to elucidate the multiple regulatory pathways for cPLA2 activation. 2. In RAW 264.7 cells UTP (100 microM) and thapsigargin (1 microM) caused 2 and 1.2 fold increases, respectively, in [3H]-AA release. The release of [3H]-AA following treatment with UTP and thapsigargin were non-additive, totally abolished in the Ca2+-free buffer, BAPTA (30 microM)-containing buffer or in the presence of the cPLA2 inhibitor MAFP (50 microM), and inhibited by pretreatment of cells with pertussis toxin (100 ng ml(-1)) or 4-bromophenacyl bromide (100 microM). By contrast, aristolochic acid (an inhibitor of sPLA2) had no effect on UTP and thapsigargin responses. 3. U73122 (10 microM) and neomycin (3 mM), inhibitors of PI-PLC, inhibited UTP-induced IP formation (88% and 83% inhibition, respectively) and AA release (76% and 58%, respectively), accompanied by a decrease in the [Ca2+]i rise. 4. Wortmannin attenuated the IP response of UTP in a concentration-dependent manner (over the range 10 nM-3 microM), and reduced the UTP-induced AA release in parallel. RHC 80267 (30 microM), a specific diacylglycerol lipase inhibitor, had no effect on UTP-induced AA release. 5. Short-term treatment with PMA (1 microM) inhibited the UTP-stimulated accumulation of IP and increase in [Ca2+]i, but had no effect on the release of AA. In contrast, the AA release caused by thapsigargin was increased by PMA. 6. The role of PKC in UTP- and thapsigargin-mediated AA release was shown by the blockade of these effects by staurosporine (1 microM), Ro 31-8220 (10 microM), Go 6976 (1 microM) and the down-regulation of PKC. 7. Following treatment of cells with SK&F 96365 (30 microM), thapsigargin-, but not UTP-, induced Ca2+ influx, and the accompanying AA release, were down-regulated. 8. Neither PD 98059 (100 microM), MEK a inhibitor, nor genistein (100 microM), a tyrosine kinase inhibitor, had any effect on the AA responses induced by UTP and thapsigargin. 9. We conclude that UTP-induced cPLA2 activity depends on the activation of PI-PLC and the sustained elevation of intracellular Ca2+, which is essential for the activation of cPLA2 by UTP and thapsigargin. The [Ca2+]i-dependent AA release that follows treatment with both stimuli was potentiated by the activity of protein kinase C (PKC). A pertussis toxin-sensitive pathway downstream of the increase in [Ca2+]i was also shown to be involved in AA release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号