首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Remote sensing of invasive species is a critical component of conservation and management efforts, but reliable methods for the detection of invaders have not been widely established. In Hawaiian forests, we recently found that invasive trees often have hyperspectral signatures unique from that of native trees, but mapping based on spectral reflectance properties alone is confounded by issues of canopy senescence and mortality, intra- and inter-canopy gaps and shadowing, and terrain variability. We deployed a new hybrid airborne system combining the Carnegie Airborne Observatory (CAO) small-footprint light detection and ranging (LiDAR) system with the Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) to map the three-dimensional spectral and structural properties of Hawaiian forests. The CAO-AVIRIS systems and data were fully integrated using in-flight and post-flight fusion techniques, facilitating an analysis of forest canopy properties to determine the presence and abundance of three highly invasive tree species in Hawaiian rainforests.

The LiDAR sub-system was used to model forest canopy height and top-of-canopy surfaces; these structural data allowed for automated masking of forest gaps, intra- and inter-canopy shadows, and minimum vegetation height in the AVIRIS images. The remaining sunlit canopy spectra were analyzed using spatially-constrained spectral mixture analysis. The results of the combined LiDAR-spectroscopic analysis highlighted the location and fractional abundance of each invasive tree species throughout the rainforest sites. Field validation studies demonstrated < 6.8% and < 18.6% error rates in the detection of invasive tree species at  7 m2 and  2 m2 minimum canopy cover thresholds. Our results show that full integration of imaging spectroscopy and LiDAR measurements provides enormous flexibility and analytical potential for studies of terrestrial ecosystems and the species contained within them.  相似文献   


2.
Within Australia, the discrimination and mapping of forest communities has traditionally been undertaken at the stand scale using stereo aerial photography. Focusing on mixed species forests in central south-east Queensland, this paper outlines an approach for the generation of tree species maps at the tree crown/cluster level using 1 m spatial resolution Compact Airborne Spectrographic Imager (CASI; 445.8 nm–837.7 nm wavelength) and the use of these to generate stand-level assessments of community composition. Following automated delineation of tree crowns/crown clusters, spectral reflectance from pixels representing maxima or mean-lit averages of channel reflectance or band ratios were extracted for a range of species including Acacia, Angophora, Callitris and Eucalyptus. Based on stepwise discriminant analysis, classification accuracies of dominant species were greatest (87% and 76% for training and testing datasets; n = 398) when the mean-lit spectra associated with a ratio of the reflectance (ρ) at 742 nm (ρ742) and 714 nm (ρ714) were used. The integration of 2.6 m HyMap (446.1 nm–2477.8 nm) spectra increased the accuracy of classification for some species, largely because of the inclusion of shortwave infrared wavebands. Similar increases in accuracy were achieved when classifications of field spectra resampled to CASI and HyMap wavebands were compared. The discriminant functions were applied subsequently to classify crowns within each image and produce maps of tree species distributions which were equivalent or better than those generated through aerial photograph interpretation. The research provides a new approach to tree species mapping, although some a priori knowledge of the occurrence of broad species groups is required. The tree maps have application to biodiversity assessment in Australian forests.  相似文献   

3.
Tree species classification is still solved at insufficient reliability in airborne optical data. The variation caused by directional reflectance anisotropy hampers image-based solutions. In addition, trees show considerable within-species variation in reflectance properties. We examined these phenomena at the single-tree level, using the Leica ADS40 line sensor and XPro software, which constitute the first photogrammetric large-format multispectral system to provide target reflectance images. To analyze the influence of illumination conditions in the canopy, we developed a method in which the crown shape as well as between-tree occlusions and shading were modeled, using dense LiDAR data. The precision of the ADS40 reflectance images in well-defined surfaces was 5% as coefficient of variation when 1−4-km image data were fused. The range of reflectance anisotropy was ± 30% for trees near the solar principal plane, with differences between bands and species. Because of the anisotropy differences observed, the spectral separability of the tree species in different bands is dependent on the view-illumination geometry. The within-species variation was high; the coefficient of variation was 13−31%. The contribution of tree and stand variables to anisotropy-normalized reflectance variation was examined. The effects of the species composition of adjacent trees were substantial in NIR and this variation hampers spectral classification in mixed stands. We also studied species- and band-specific intracrown brightness patterns, and we suggest their use as high-order image features in species classification. A species classification accuracy of up to 80% was obtained using 4-km data, which showed the high potential of the ADS40.  相似文献   

4.
Variation in the foliar chemistry of humid tropical forests is poorly understood, and airborne imaging spectroscopy could provide useful information at leaf and canopy scales. However, variation in canopy structure affects our ability to estimate foliar properties from airborne spectrometer data, yet these structural affects remain poorly quantified. Using leaf spectral (400–2500 nm) and chemical data collected from 162 Australian tropical forest species, along with partial least squares (PLS) analysis and canopy radiative transfer modeling, we determined the strength of the relationship between canopy reflectance and foliar properties under conditions of varying canopy structure.At the leaf level, chlorophylls, carotenoids and specific leaf area (SLA) were highly correlated with leaf spectral reflectance (r = 0.90–0.91). Foliar nutrients and water were also well represented by the leaf spectra (r = 0.79–0.85). When the leaf spectra were incorporated into the canopy radiative transfer simulations with an idealistic leaf area index (LAI) = 5.0, correlations between canopy reflectance spectra and leaf properties increased in strength by 4–18%. The effects of random LAI (= 3.0–6.5) variation on the retrieval of leaf properties remained minimal, particularly for pigments and SLA (r = 0.92–0.93). In contrast, correlations between leaf nitrogen (N) and canopy reflectance estimates decreased from r = 0.87 at constant LAI = 5 to r = 0.65 with randomly varying LAI = 3.0–6.5. Progressive increases in the structural variability among simulated tree crowns had relatively little effect on pigment, SLA and water predictions. However, N and phosphorus (P) were more sensitive to canopy structural variability. Our modeling results suggest that multiple leaf chemicals and SLA can be estimated from leaf and canopy reflectance spectroscopy, and that the high-LAI canopies found in tropical forests enhance the signal via multiple scattering. Finally, the two factors we found to most negatively impact leaf chemical predictions from canopy reflectance were variation in LAI and viewing geometry, which can be managed with new airborne technologies and analytical methods.  相似文献   

5.
The estimation of leaf nitrogen concentration (LNC) in crop plants is an effective way to optimize nitrogen fertilizer management and to improve crop yield. The objectives of this study were to (1) analyse the spectral features, (2) explore the spectral indices, and (3) investigate a suitable modelling strategy for estimating the LNC of five species of crop plants (rice (Oryza sativa L.), corn (Zea mays L.), tea (Camellia sinensis), gingili (Sesamum indicum), and soybean (Glycine max)) with laboratory-based visible and near-infrared reflectance spectra (300–2500 nm). A total of 61 leaf samples were collected from five species of crop plant, and their LNC and reflectance spectra were measured in laboratories. The reflectance spectra of plants were reduced to 400–2400 and smoothed using the Savitzky–Golay (SG) smoothing method. The normalized band depth (NBD) values of all bands were calculated from SG-smoothed reflectance spectra, and a successive projections algorithm-based multiple linear regression (SPA-MLR) method was then employed to select the spectral features for five species. The SG-smoothed reflectance spectra were resampled using a spacing interval of 10 nm, and normalized difference spectral index (NDSI) and three-band spectral index (TBSI) were calculated for all wavelength combinations between 400 and 2400 nm. The NDSI and TBSI values were employed to calibrate univariate regression models for each crop species. The leave-one-out cross-validation procedure was used to validate the calibrated regression models. Study results showed that the spectral features for LNC estimation varied among different crop species. TBSI performed better than NDSI in estimating LNC in crop plants. The study results indicated that there was no common optimal TBSI and NDSI for different crop species. Therefore, we suggest that, when monitoring LNC in heterogeneous crop plants with hyperspectral reflectance, it might be appropriate to first classify the data set considering different crop species and then calibrate the model for each species. The method proposed in this study requires further testing with the canopy reflectance and hyperspectral images of heterogeneous crop plants.  相似文献   

6.
Remote sensing is a promising tool that provides quantitative and timely information for crop stress detection over large areas. Nitrogen (N) is one of the important nutrient elements influencing grain yield and quality of winter wheat (Triticum aestivum L.). In this study, canopy spectral parameters were evaluated for N status assessment in winter wheat. A winter wheat field experiment with 25 different cultivars was conducted at the China National Experimental Station for Precision Agriculture, Beijing, China. Wheat canopy spectral reflectance over 350–2500 nm at different stages was measured with an ASD FieldSpec Pro 2500 spectrometer (Analytical Spectral Devices, Boulder, CO, USA) fitted with a 25° field of view (FOV) fibre optic adaptor. Thirteen narrow-band spectral indices, three spectral features parameters associated with the absorption bands centred at 670 and 980 nm and another three related to reflectance maximum values located at 560, 920, 1690 and 2230 nm were calculated and correlated with leaf N concentration (LNC) and canopy N density (CND). The results showed that CND was a more sensitive parameter than LNC in response to the variation of canopy-level spectral parameters. The correlation coefficient values between LNC and CND, on the one hand, and narrow-band spectral indices and spectral features parameters, on the other hand, varied with the growth stages of winter wheat, with no predominance of a single spectral parameter as the best variable. The differences in correlation results for the relationships of CND and LNC with narrow-band spectral indices and spectral features parameters decreased with wheat plant developing from Feekes 4.0 to Feekes 11.1. The red edge position (REP) was demonstrated to be a good indicator for winter wheat LNC estimation. The absorption band depth (ABD) normalized to the area of absorption feature (NBD) at 670 nm (NBD670) was the most reliable indicator for winter wheat canopy N status assessment.  相似文献   

7.
Forage quality is an important regulator of livestock performance also determining the grazing capacity in grasslands and pastures. The objective of this work was to develop spectral normalized indices to accurately predict canopy nitrogen (N), neutral detergent fibre (NDF), and acid detergent fibre (ADF) concentrations and in vitro dry matter digestibility (IVDMD) in three forage species, at two phenological stages and under two fertilization conditions. To select indices with the highest possible independence from canopy structure, we prioritized the selection of indices that were stable at both leaf and canopy scales and evaluated if the best selected indices were correlated with selected leaf and canopy structural traits and leaf water content. All possible normalized indices, based on the reflectance and the first difference reflectance, for the 400–2400 nm spectral range were related through simple regression models with N, NDF, and ADF concentrations and IVDMD. The index that combined the first difference reflectance in the 685 and 1770 nm wavelengths was found to be a potentially useful index to predict canopy N concentration under different field conditions. The best indices selected to predict canopy NDF and ADF concentration and IVDMD, based on the reflectance around 2120–2145 and 2250–2260 nm, had limited application and appeared to be suitable only to identify gross differences in fibre and IVDMD. Future studies should analyse how the best selected indices behave under field lighting conditions and for a wide range of species, phenological stages, and variations in canopy structural traits.  相似文献   

8.
Leaf spectroscopy may be useful for tropical species discrimination, but few studies have provided an understanding of the spectral separability of species or how leaf spectroscopy scales to the canopy level relevant to mapping. Here we report on a study to classify humid tropical forest canopy species using field-measured leaf optical properties with leaf and canopy radiative transfer models. The experimental dataset included 188 canopy species collected in humid tropical forests of Hawaii. The leaf optical model PROSPECT-5 was used to simulate the leaf spectra of each species, which was used to train a classifier based on Linear Discriminant Analysis, and a canopy radiative transfer model 4SAIL2 to scale leaf measurements to the canopy level. The relationship linking classification accuracy at the leaf level to biodiversity showed an asymptotic trend reaching a maximum error of 47% when applied to the entire 188 species experimental dataset, and 56% when a simulated dataset showing amplified within-species spectral variability was used, suggesting uniqueness of the spectral signature for a significant proportion of species under study. The maximum error in canopy-level species classification was higher than leaf-level classification: 55% when canopy structure was held constant, and 64% with varying and unknown canopy structure. However, when classifying fewer species at a time, errors dropped considerably; for example, 20 species can be classified to 82-88% accuracy. These results highlight the potential of imaging spectroscopy to provide species discrimination in high-diversity, humid tropical forests.  相似文献   

9.
The objectives of this study were (i) to investigate the feasibility of using spectral reflectance for monitoring As and Cr accumulation in Chinese brake fern (Pteris vitatta), and (ii) to search for spectral indices sensitive to structural changes caused by metal accumulation during the process of phytoremediation. Potted Chinese brake fern plants were exposed to As (100 and 300 ppm) and Cr (300 and 600 ppm) treatments for 22 days. The plants were then harvested and analysed for metal accumulation. Diffuse reflectance spectra (350–2500 nm) of the plant canopies were collected regularly throughout the metal treatment period using a portable spectroradiometer. Leaf reflectance is governed by leaf surface properties, internal structure, and foliar pigments and biochemical components. Leaf samples were collected and analysed for structural changes through microscopic observations. Our microscopic studies on changes of leaf structure provide insight into the physical changes that are remotely detected as changes in reflectance, and may permit extrapolation of these results to other plant species. Cr accumulation resulted in a decrease in biomass, relative water content (RWC), and changes in the internal structure of the leaf. The structural and spectral results show significant changes in Cr‐treated plants while the changes were minimal in As‐treated plants compared to untreated plants. Our spectral analysis revealed that a unique ratio index R 1110/R 810 can be used to monitor structural changes in plants due to accumulation of Cr. This index distinguished Cr‐treated plants from untreated and As‐treated plants. The Normalized Difference Vegetative Index (NDVI) distinguished stressed plants, but NDVI cannot distinguish Cr‐stressed plants from As‐stressed plants. Our results show that brake fern can accumulate significant amounts of Cr in shoots (2108 mg kg?1 dry weight), but it is not a hyperaccumulator for Cr because much higher Cr accumulation was found in roots (7686 mg kg?1 dry weight). This study suggests that the infrared reflectance spectrum (800–1300 nm) of plant canopy may provide a non‐intrusive monitoring method to access the physiological status of plants grown in heavy metal‐contaminated soil.  相似文献   

10.
A judicious combination of spectral and spatial surface information can improve the understanding of the vegetation optical variability and typological differentiation. The objective of this study is to evaluate the potential of airborne spectral radiation and digital imagery data for vegetation canopy classification and the impact of canopy texture on the vegetation–solar radiation interaction. To conduct the study, two multispectral radiometers with wavelengths ranging from 350 to 1050 nm and a fine pixel digital camera are used. One of the radiometers is positioned close to the digital camera, and, both instruments are carried by a radio‐controlled helicopter flying above the canopy of a boreal forest of the northern Japanese island of Hokkaido. Analyses of the canopy reflectance signature show a clear species differentiation in the vegetation of the area and give an evaluation of the canopy radiation capacities. The bamboo grass species have the highest reflectance and the needle‐leaf species the lowest. To understand the physical factors associated with the reflectance‐species typological relationship, textural features are extracted from digital images, by using colour discrimination techniques. The features estimated are the brightness intensity of the canopy, the amounts of gaps and shadows, the degree of heterogeneity of light scattering, and the green vegetation fraction. Then, the relationship between these individual properties and reflectance is examined. The results obtained show that reflectance decreases with increasing amount of gaps and shadows and, increases with the brightness intensity and more importantly with light scattering heterogeneity of the canopy. This heterogeneity effect, derived from the vegetation luminance distribution is examined through three methods. The most elaborate among these methods is the semivariogram analysis. Results of this analysis show that the range of the semivarioragram reflects well enough the average size of the plants (short range for the bamboo grass and large range for the needle‐leaf species). The needle‐leaf species have the highest variability, i.e. are the most heterogeneous light scatterers, while the bamboo grass species are the least variable. The scale of variability of the distribution of luminance differs according to the species: it is dominated by macrovariability in the needle‐leaf, and microvariability in the bamboo grass and the broadleaf. The needle‐leaf species' high spatial heterogeneity of light scattering would reduce the measured canopy bi‐directional reflected radiation and enhance the transmission of this radiation towards lower vegetation levels through a multiscattering radiation process.  相似文献   

11.
The aim of this study was to evaluate the use of ground-based canopy reflectance measurements to detect changes in physiology and structure of vegetation in response to experimental warming and drought treatment at six European shrublands located along a North-South climatic gradient. We measured canopy reflectance, effective green leaf area index (green LAIe) and chlorophyll fluorescence of dominant species. The treatment effects on green LAIe varied among sites. We calculated three reflectance indices: photochemical reflectance index PRI [531 nm; 570 nm], normalized difference vegetation index NDVI680 [780 nm; 680 nm] using red spectral region, and NDVI570 [780 nm; 570 nm] using the same green spectral region as PRI. All three reflectance indices were significantly related to green LAIe and were able to detect changes in shrubland vegetation among treatments. In general warming treatment increased PRI and drought treatment reduced NDVI values. The significant treatment effect on photochemical efficiency of plants detected with PRI could not be detected by fluorescence measurements. However, we found canopy level measured PRI to be very sensitive to soil reflectance properties especially in vegetation areas with low green LAIe. As both soil reflectance and LAI varied between northern and southern sites it is problematic to draw universal conclusions of climate-derived changes in all vegetation types based merely on PRI measurements. We propose that canopy level PRI measurements can be more useful in areas of dense vegetation and dark soils.  相似文献   

12.
In this study, the hypothesis that optimum wavebands could be selected for calculation of RDI values was tested. The canopy reflectance data from 350?nm to 2500?nm were collected at various growth stages of wheat irrigated in six amounts before stem elongation. Leaf water contents (%LWC) were insensitive to the irrigation level, while the leaf area index (LAI) and dry phytomass (DM) appeared to be sensitive to the irrigation level. The irrigation levels did not cause considerable spectral response within a specific growth stage, but spectral differences between the growth stages were evident, resulting in strong relationships between the spectral data and the biophysical parameters based on the pooled data of different stages and poor and inconsistent relationships between the spectral data and the biophysical parameters based on data within a specific growth stage. Under field conditions, the peak absorption positions of the wheat canopy were found to shift away from the theoretical wavelengths in the water absorption regions. When using the pooled data covering all the growth stages, the RDI values performed better than reflectance minimum and large differences were found between the RDI values on different selected wavebands in correlating the spectral data with the biophysical parameters. The 965–1085?nm and 1192–1282?nm spectral regions appeared to be the optimum bands for relating RDI to %LWC.  相似文献   

13.
Remote sensing of canopy chemistry could greatly advance the study and monitoring of functional processes and biological diversity in humid tropical forests. Imaging spectroscopy has contributed to canopy chemical remote sensing, but efforts to develop general, globally-applicable approaches have been limited by sparse and inconsistent field and laboratory data, and lacking analytical methods. We analyzed leaf hemispherical reflectance and transmittance spectra, along with a 21-chemical portfolio, taken from 6136 fully sunlit humid tropical forest canopies, and developed an up-scaling method using a combination of canopy radiative transfer, chemometric and high-frequency noise modeling. By integrating these steps, we found that the accuracy and precision of multi-chemical remote sensing of tropical forest canopies varies by leaf constituent and wavelength range. Under conditions of varying canopy structure and spectral noise, photosynthetic pigments, water, nitrogen, cellulose, lignin, phenols and leaf mass per area (LMA) are accurately estimated using visible-to-shortwave infrared spectroscopy (VSWIR; 400-2500 nm). Phosphorus and base cations are retrieved with lower yet significant accuracy. We also find that leaf chemical properties are estimated far more consistently, and with much higher precision and accuracy, using the VSWIR range rather than the more common and limited visible to near-infrared range (400-1050 nm; VNIR). While VNIR spectroscopy proved accurate for predicting foliar LMA, photosynthetic pigments and water, VSWIR spectra provided accurate estimates for three times the number of canopy traits. These global results proved to be independent of site conditions, taxonomic composition and phylogenetic history, and thus they should be broadly applicable to multi-chemical mapping of humid tropical forest canopies. The approach developed and tested here paves the way for studies of canopy chemical properties in humid tropical forests using the next generation of airborne and space-based high-fidelity imaging spectrometers.  相似文献   

14.
Efficient and accurate detection of the temporal dynamics and spatial variations of leaf dry matter content would help monitor key properties and processes in vegetation and the wider ecosystem. However, leaf water content strongly absorbs at shortwave infrared wavelengths, reducing the signal from dry matter. The major objective of this study was to examine relationship between spectral reflectance of fresh leaves and the ratio of leaf dry mass to leaf area, across a wide range of species at the leaf scale. A narrow-band, normalized index combining two distinct wavebands centred at 1649 and 1722 nm achieved the highest overall performance and discriminatory power compared to either single band or first derivatives. The normalized index was evaluated using the PROSPECT (leaf optical properties spectra) simulated reflectance spectra and field measurements from the Leaf Optical Properties Experiment (LOPEX) data set. Both evaluations show that leaf dry matter contents were retrievable with R 2 of 0.845 and 0.681 and regression slopes of 0.903 and 0.886. This study suggests that spectral reflectance measurements hold promise for the assessment of dry matter content for green leaves. Further investigation needs to be conducted to evaluate the effectiveness of this normalized index at canopy scales.  相似文献   

15.
A study was conducted to investigate whether reflectance data from vegetation in a tropical forest canopy could be used for species level discrimination. Reflectance spectra of 11 species were analysed at the scale of the leaf, branch, tree and species. To enhance separation of species-of-interest spectra from the other spectra in the data, the variation in reflectance values for the species-of-interest were used to create a characteristic spectral shape. With a simple algorithm, the resultant shape-space was used as a data filter that correctly discriminated against 94% of the non-species-of-interest trees.  相似文献   

16.
The spectral characteristics of and the interaction between leaves and light were analysed based on the optical absorption coefficients of foliar water and biochemical components. The equations for calculating the radiative-equivalent water thickness (REWT) of leaves and canopy were presented based on the difference in reflectance at 945 and 975 nm. Because of the direct reflection on leaf surface and the leaf internal scattering, the REWT derived from the Beer–Lambert principle was different from the leaf or canopy equivalent water thickness (EWT). Two independent datasets at canopy or leaf scales were designed to calibrate and validate the relationships between EWT and REWT. The results show that (1) the leaf or canopy REWT can be calculated from the reflectance difference between 945 and 975 nm; (2) the leaf REWT was 3.3 times larger than the EWT with a significant determination coefficient (R 2) of 0.80 for our dataset and 0.86 for the Leaf Optical Properties Experiment (LOPEX'93) dataset; (3) the canopy REWT was 1.4 times larger than the EWT with a significant R 2 of 0.56 for the winter wheat canopy spectral dataset in 2002, and 0.61 for the 2004 dataset. Therefore, the leaf or canopy EWT can be detected by calculating REWT from the difference in reflectance at 945 and 975 nm. Furthermore, because the relationship between REWT and EWT reflected the interaction of light with leaves or canopy, the multiple scattering optical pathlength in the near-infrared (NIR) bands can also be calculated by the ratio of REWT to EWT.  相似文献   

17.
In this study, a wide range of leaf nitrogen concentration levels was established in field-grown rice with the application of three fertilizer levels. Hyperspectral reflectance data of the rice canopy through rice whole growth stages were acquired over the 350 nm to 2500 nm range. Comparisons of prediction power of two statistical methods (linear regression technique (LR) and artificial neural network (ANN)), for rice N estimation (nitrogen concentration, mg nitrogen g?1 leaf dry weight) were performed using two different input variables (nitrogen sensitive hyperspectral reflectance and principal component scores). The results indicted very good agreement between the observed and the predicted N with all model methods, which was especially true for the PC-ANN model (artificial neural network based on principal component scores), with an RMSE?=?0.347 and REP?=?13.14%. Compared to the LR algorithm, the ANN increased accuracy by lowering the RMSE by 17.6% and 25.8% for models based on spectral reflectance and PCs, respectively.  相似文献   

18.
After leaves are clipped their reflectance properties change over time at variable rates. Spectral change can in part be attributed to the changing water content of the leaf, which affects absorption in the VIS, NIR and the SWIR. Maintaining water volume within samples has been the motivation behind many leaf handling techniques. This study has assessed the time constraints between leaf collection and spectral measurement. Specifically the relationship between leaf water content and foliar spectra (350-2500 nm) was examined over time for five tropical trees (common guava (Psidium guajava), purple guava (Psidium littorale), weeping fig (Ficus benjamina), floss silk (Chorisia speciosa), and coffee (Coffea arabica)). This investigation was carried for leaves wrapped with moist gauze around their petiole (treatment leaves) and leaves with no treatment. Spectral measurements and mass measurements were repeated for each leaf once every hour for the first 12 h, then every 4-6 h for 18 h, followed by one measurement after 12 h, and finally once a day until the control samples became air-dry. Foliar reflectance in the visible spectrum was not immediately responsive to water content changes and did not change until wilting of the leaf was observed. The NIR and SWIR wavelength regions were affected immediately by small changes in water content. Thus, by the time wilting was first observed the NIR and SWIR foliar reflectance differed considerably from corresponding fresh leaf reflectance. No common time limit could be observed for leaf clipping and reflectance measurement. Leaves have a variety of water contents and dehydration rates hence measurement time constraints are dependent on the properties of the leaf or species. Rather than using a time limit it is recommended that leaf handling techniques be based upon managing leaf water content and leaf structure. The results of this study indicate that leaves with petioles wrapped in moist paper towel and placed within plastic bags will maintain leaf reflectance longer than equivalent leaves without treatment; samples tested here lasted a minimum of 7 days. θ and D indices (“angle difference” and “root mean square difference”, respectively) revealed a stronger relationship between leaf water content and spectral shape than between leaf water and raw reflectance magnitude. The ratio of 1187/1096 nm, when compared with θ and D indices and individual reflectance bands, showed the highest coefficient of determination with leaf water content (r2 = 0.952).  相似文献   

19.
A rapid canopy reflectance model inversion experiment was performed using multi-angle reflectance data from the NASA Multi-angle Imaging Spectro-Radiometer (MISR) on the Earth Observing System Terra satellite, with the goal of obtaining measures of forest fractional crown cover, mean canopy height, and aboveground woody biomass for large parts of south-eastern Arizona and southern New Mexico (> 200,000 km2). MISR red band bidirectional reflectance estimates in nine views mapped to a 250 m grid were used to adjust the Simple Geometric-optical Model (SGM). The soil-understory background signal was partly decoupled a priori by developing regression relationships with the nadir camera blue, green, and near-infrared reflectance data and the isotropic, geometric, and volume scattering kernel weights of the LiSparse–RossThin kernel-driven bidirectional reflectance distribution function (BRDF) model adjusted against MISR red band data. The SGM's mean crown radius and crown shape parameters were adjusted using the Praxis optimization algorithm, allowing retrieval of fractional crown cover and mean canopy height, and estimation of aboveground woody biomass by linear rescaling of the dot product of cover and height. Retrieved distributions of crown cover, mean canopy height, and aboveground woody biomass for forested areas showed good matches with maps from the United States Department of Agriculture (USDA) Forest Service, with R2 values of 0.78, 0.69, and 0.81, and absolute mean errors of 0.10, 2.2 m, and 4.5 tons acre- 1 (10.1 Mg ha- 1), respectively, after filtering for high root mean square error (RMSE) on model fitting, the effects of topographic shading, and the removal of a small number of outliers. This is the first use of data from the MISR instrument to produce maps of crown cover, canopy height, and woody biomass over a large area by seeking to exploit the structural effects of canopies reflected in the observed anisotropy patterns in these explicitly multiangle data.  相似文献   

20.
The focus of our research is to seek spectral signatures that indicate the impact and content of heavy metals in the leaves and canopies of living plants during the process of phytoremediation. Potted plants of barley (Hordeum vulgare) were grown for 5–6 weeks before being subjected to metal treatments of Zn and Cd. Diffuse reflectance spectra (350–2500 nm) of the plant canopies were collected daily using a portable spectroradiometer throughout the treatment period. Foliar structural changes of Zn‐treated plants included a decrease in intercellular space, palisade and epidermal cell size while Cd‐treated plants displayed fewer structural changes in leaf. Spectral analysis revealed that the band ratios at 1110 nm to that at 810 nm might be used as an indicator of the accumulation of certain metals in plant shoots. Normalized Difference Vegetation Index (NDVI) and leaf‐water‐content indices examined as part of our spectral analysis were not able to distinguish plants treated with different metals. Our ratio index R1110/R810, on the other hand, correlates closely with the magnitude of leaf structural changes. This study suggests that the infrared reflectance spectrum (800–1300 nm) of plant canopy might provide a non‐intrusive monitoring method for the physiological status of plants grown on heavy metal contaminated soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号