首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
底吹氩中间包钢液流动特性的数值模拟研究   总被引:12,自引:3,他引:9  
根据某厂实际中间包的操作工艺参数,采用欧拉两流体模型以及多孔介质模型,用数值模拟法研究了同时采用湍流控制器和气幕挡墙技术,中间包内气幕挡墙的位置及吹气量对中间包内钢液流动特性的影响。结果表明,采用气幕挡墙技术,吹气量及吹气位置对钢液流场及RTD曲线影响较大,吹气位置靠近人口或出口都不利于中间包钢液流动特性的改善,吹气量太大易引起表面卷渣现象,吹气量太小,不能形成有效的气幕挡墙。气幕挡墙距离人口1200~2000mm,且吹气量为0.90m^3/h时,可以有效延长钢液的停留时间,减小死区体积,有利于夹杂物的上浮去除。  相似文献   

2.
在相似理论的基础上,通过水力学模拟对两流板坯连铸中间包3种不同气幕挡墙形式下的包内流场进行研究。实验结果表明:在同一吹气量(28L/h)时,气幕挡墙置于中间包端部(方案一),在气幕的两侧形成两个方向相反的回流区域,延长了钢液的平均停留时间,采用该方案时中间包内死区比例为18.5%;气幕挡墙置于中间包墙坝之间(方案二),也形成了两个较大的回流区,增加了钢液间的混合和夹杂物的去除,中间包内死区最小为17.4%,为三种方案之最优;气幕挡墙置于中间包挡墙之前(方案三),气幕挡墙并未形成有效的气幕,中间包内部流体未得到充分混匀,出现27.5%的较大的死区。  相似文献   

3.
气幕挡墙对中间包内钢液流场影响的数值模拟   总被引:2,自引:0,他引:2  
根据实际中间包的操作工艺参数,采用欧拉-欧拉两流体模型,用数值模拟法模拟计算了中间包底吹对钢液流动的影响.结果表明,底吹改变了中间包内钢液的流动状态,在气幕挡墙的两侧分别形成了方向相反的回流区.底吹气体流量对钢液流动状态、气泡分布影响显著,底吹气体流量太大或太小都不利于改善钢液的流动状态.  相似文献   

4.
中间包内吹气与卷渣行为的水模拟研究   总被引:1,自引:0,他引:1  
以某钢厂中间包为原型,建立与原型尺寸为1∶3的水模型,研究中间包采用气幕挡墙时,流体流动行为及钢渣卷混现象,考察吹气量和气体在流体中行程对钢渣界面的影响规律。研究表明:正常浇铸条件下避免钢液卷渣的临界吹气量在0.14 m3/h,中间包液面出现渣眼的临界吹氩量为0.10~0.12 m3/h,超过临界吹气量后,渣眼加速扩增。  相似文献   

5.
气幕挡墙中间包钢水流动的数值模拟   总被引:12,自引:0,他引:12  
根据二流连铸1500mm×250mm板坯时中间包的操作工艺参数,采用欧拉两流体模型,多孔介 质模型和拉格朗日随机轨道模型,模拟计算了采用湍流控制器和气幕挡墙技术的中间包内钢液流动特性和 夹杂物的运动轨迹,并用Monte-Carlo法统计了夹杂物的总去除率。模拟结果表明,采用中间包气幕挡墙技术 可以有效改善钢液的流动特性,延长钢液停留时间,减小死区体积;当吹气量为0.90m³/h时,夹杂物去除率比 不吹气工艺增加15.6%  相似文献   

6.
气幕挡墙中间包数理模拟及实践   总被引:1,自引:0,他引:1  
根据武汉钢铁股份有限公司炼钢总厂三分厂二流板坯连铸中间包的操作工艺参数,采用数学与物理相结合的模拟方法,对比研究了气幕挡墙技术对中间包内钢液流动特性及夹杂物去除的影响,并根据研究结果进行了工业试验.研究结果表明:采用气幕挡墙技术,可有效地改善钢液的流动状态,延长钢液的平均停留时间,降低死区体积,提高夹杂物去除率,适应超纯净钢中间包冶金的需求.  相似文献   

7.
中间包吹氩是适应洁净钢冶炼的新技术、新方法。依据相似原理,在实验室建立了一定相似比的薄板坯连铸中间包物理模型。比较了传统堰坝组合,吹氩气幕挡墙分别代替堰、坝对中间包流体流动特征的影响,并尝试在中间包内采用双气幕挡墙的控流方式。结果表明,气幕挡墙分别代替堰、坝,中间包停留时间和死区体积与堰 坝组合十分相近;双气幕挡墙代替堰 坝组合,除死区体积较大外,停留时间接近堰 坝组合。上述结论为气幕挡墙技术的进一步应用提供了参考依据。  相似文献   

8.
李键  卢金霖  罗志国  邹宗树 《炼钢》2023,(3):52-57+85
气幕挡墙技术是改善钢液洁净度的重要方法,吹入的气泡不仅可以改善中间包流场,还可以黏附去除夹杂物,大大提高夹杂物的去除率。采用Euler-Lagrange-Lagrange方法来研究钢液、气泡和夹杂物三相交互作用行为,该模型考虑了钢液与气泡、钢液与夹杂物、气泡与夹杂物之间的相互作用。在正常连铸条件下,研究了气泡黏附与吹气量对不同粒径夹杂物去除的影响。模拟结果表明,考虑气泡黏附的夹杂物去除率比不考虑黏附去除提高了19.12%~28.94%,气泡黏附夹杂物是去除夹杂物的重要方式之一,在气幕挡墙的研究中不可忽略。在本研究的吹气范围内,夹杂物的上浮去除率和黏附去除率都随着吹气量的增加而增大。与传统的挡墙挡坝中间包相比,使用气幕挡墙取代传统挡坝更有利于夹杂物的去除。  相似文献   

9.
根据水钢炼钢厂150 mm×150 mm六流连铸32 t中间包的结构操作工艺参数,采用数模仿真法研究了气幕挡墙技术对中间包内钢液流动特性及夹杂物去除的影响,并对HPB235和65钢进行了工业试验。结果表明,气幕挡墙可以有效改善钢液的流动状态,均衡各出口停留时间,有效延长钢液的平均停留时间,降低死区体积,提高夹杂物去除率。该技术适应多流中间包纯净钢冶炼的需求。  相似文献   

10.
中间包内钢水控流技术   总被引:3,自引:0,他引:3  
介绍了中间包冶金技术的发展,分析了中间包内钢水的流动特性及控流装置对钢水流动状态的影响,论述了改进中间包内的控流装置可以明显改变钢水流动状态,中间包内同时应用堰、坝、湍流控制器及多孔挡墙或气幕挡墙,能够延长钢水在中间包内的滞留时间,有效去除钢中夹杂,提高中间包冶金效果。  相似文献   

11.
This paper focuses on the numerical modelling of slag entrainment in liquid metal. Due to the complexity of the multi‐phase flow situation and the inherently unsteady nature of the process, feasible simulations are restricted to rather coarse grids. Nevertheless, important flow structures like secondary suction vortices cannot be captured by an insufficiently resolved grid. As a consequence three numerical approaches are proposed in order to focus on local slag entrainment events within a global flow simulation. Firstly, in the course of Volume of Fluid (VOF) simulations the evolving metal‐slag interface is sharpened by a solution dependent adaptive grid refinement. Secondly, possible suction vortices are tested by super‐imposed Chimera grids. In this approach a finely resolved O‐shaped grid is placed around the trajectory of a representative Lagrangian fluid particle that is started from a local depression at the metal‐slag interface. Thirdly, a simplified concept of Lagrangian slag droplets is utilized in order to detect irregularly occurring flow situations that are prone to slag entrainment. These modelling approaches are applied to metallurgical processes like tundish pouring or continuous casting. With help of these slag entrainment modelling approaches a global metallurgical flow simulation can be augmented by the effect of local entrainment events.  相似文献   

12.
The fluid flow and the interfacial phenomenon of slag and metal in tundish with gas blowing were studied with mathematical and physical modeling, and the effects of gas flowrate, the placement of porous beam for the generation of bubbles, and the combination of flow control devices on the flow and slag-metal interface were investigated. The results show that the position of gas bubbling has a significant effect on the flow in tundish, and the placement of porous beam and gas flowrate are the two main factors affecting the entrapment of slag in tundish. The closer the porous beam to the weir, the more reasonable is the flow, which is in favor of the control of slag entrapment in tundish.  相似文献   

13.
秦绪锋  程常桂  李阳  张春明  金焱  武光君 《钢铁》2019,54(8):107-115
 中间包上水口环形吹氩可以在塞棒周围形成清洗钢液的环形气幕,同时部分氩气泡随钢液进入上水口内,可以减少非金属夹杂物在水口内壁的黏附,起到防止水口堵塞的作用。然而,不合理的吹氩量会导致中间包内液面渣层受过强的气液羽流冲击而形成渣眼,使得钢液裸露并发生二次氧化,严重影响铸坯质量。采用标准 k ε 湍流模型研究中间包内流体流动,采用DPM模型和VOF模型耦合方法,研究上水口环形吹氩条件下渣眼的形成及演化规律。结果表明,上水口环形吹氩在塞棒周围形成较强的上升流,塞棒上部邻近区域存在多个涡流区;在钢液涡流的影响下,中间包液渣下层远离塞棒区域,上层向塞棒区域迁移;随着吹氩量的增大,平均湍动能增大,塞棒附近钢液速度逐渐增大,钢渣界面钢液速度先增大后减小,渣眼边缘钢液速度先增大后减小然后再增大,速度与垂直方向夹角逐渐减小;增大吹氩量,中间包熔池液面形成以塞棒为中心的渣眼,渣眼面积逐渐增大。试验条件下不产生渣眼的临界吹氩量为4.2 L/min,对应的钢渣界面最大速度为0.247 m/s,与垂直方向夹角为70°。  相似文献   

14.
热轧卷板的表面夹渣缺陷对热轧板的质量及产品性能会产生极其恶劣的影响,会导致产品品级的下降乃至报废等问题,并对产品的服役期限及性能造成一定影响.随着冶炼过程中钢液洁净度的不断提高,夹渣缺陷所造成的质量问题显得尤为严重.而不同生产工艺下表面夹渣缺陷的来源方式略有差异,缺陷的来源主要有精炼过程中钢包渣的卷渣、非稳态浇注时期的...  相似文献   

15.
Steel flow dominated by inertial and buoyancy flows under gas bubbling and thermal stratification conditions, in a one-strand tundish, was studied using a 2/5 scale water model. The use of a turbulence inhibitor yields plug flow volume fractions well above 40 pct for a casting rate of 3.12 tons/min under isothermal conditions. Small flow rates of gas injection (246 cm3/min), through a gas curtain, improved the fluid flow by enhancing the plug flow volume fraction. Higher flow rates originated an increase of back-mixing flow, thus forming recirculating flows in both sides of this curtain. Step inputs of hot water drove streams of this fluid toward the bath surface due to buoyancy forces. A rise in gas flow rate led to a thermal homogenization in two separated cells of flow located at each side of the gas curtain. Step inputs of cold water drove streams of fluid along the tundish bottom. Use of the gas curtain homogenized the lower part of the tundish as well as the upper part of the bath at the left side of the curtain. However, temperature at the top corner of the tundish, in the outlet box, remained very different than the rest of the temperatures inside this tundish. High gas flow rates (912 cm3/min) were required to homogenize the bath after times as long as twice the mean residence time of the fluid. Particle image velocimetry (PIV) measurements corroborated the formation of recirculating flows at both sides of the gas curtain.  相似文献   

16.
Fluid flow characteristics in a two‐strand slab tundish with Ar bubbling curtain were studied in water modelling experiments. It was found that the Ar bubbling curtain can greatly improve the flow characteristics in the tundish with a weir, a dam and a turbulence inhibitor. It dramatically increased the peak concentration time and plug volume and greatly decreased the dead volume, but hardly influenced the minimum residence time. Therefore, the fluid flow characteristics in a tundish with Ar bubbling curtain were favourable to the flotation and separation of inclusions from molten steel. The flow characteristics with low gas flow rate and short distance of the Ar bubbling curtain from the tundish outlet were better than those with high gas flow rate and large distance of the curtain from the outlet.  相似文献   

17.
Laboratory experiments were carried out to study the phenomena related to open‐eye formation in ladle treatment. Ga‐In‐Sn alloy with a melting temperature of 283 K was used to simulate the liquid steel, while MgCI2‐Glycerol(87%) solution as well as HCl solution were used to simulate the ladle slag. No open‐eye was formed at lower gas flow rates, but, occurred when gas flow reached a critical rate. This critical gas flow rate was found to depend significantly on the height of the top liquid. No noticeable amount of top liquid was observed in any of the samples taken from the metal bulk during gas stirring. To confirm this aspect, samples of slag‐metal interface were taken around the open‐eye in an industrial gas stirred steel ladle. No entrapped slag droplet was found in the solidified steel within the region between the interface and 2 cm from the interface. The accordance of the laboratory and industrial results suggests that the entrainment of slag into the steel bulk around the open‐eye cannot be considered as the major contribution to inclusion formation.  相似文献   

18.
《钢铁冶炼》2013,40(6):436-440
Abstract

Fluid flow characteristics in a two strand slab continuous casting tundish with different configurations of argon gas bubbling curtain (GBC) were investigated in physical modelling experiments. It was found from this research that the GBC with a small flow rate acted as a gas dam and could greatly improve the flow characteristics in the tundish. It increased dramatically the peak concentration time and plug flow volume, decreased greatly the dead volume, created surface directed flow and eliminated short circuiting. Therefore, the fluid flow characteristics in a tundish with GBC were favourable to the floatation and separation of inclusions from molten steel. The flow characteristics with low gas flow rate and short distance of the bubbling curtain from the tundish outlet were better than those with high gas flow rate and large distance of the curtain to the outlet. The optimal configuration for the improvement in fluid flow characteristics was turbulence inhibitor (TI)–weir–dam–GBC (TI–W–D–GBC), followed by TI–channel weir (CW)–GBC, TI–W–GBC and TI–GBC.  相似文献   

19.
以连铸1500mm×250mm板坯的中间包为原型,几何相似比1/3,采用自制多孔透气砖进行中间包底吹气的水模型试验。结果表明,气幕挡墙中间包中,夹杂物通过斯托克斯机理上浮,气泡吸附和钢液上扬流动而上浮去除;当吹气量≥0.08m~3/h,距入口中心533~800mm处形成有效的气幕挡墙,显著改善钢液流动性,夹杂物去除率由不吹气的44.86%增加至72.86%,并改善小颗粒夹杂物的去除。工业试验表明,采用气幕挡墙,使T[O]降低12%以上。  相似文献   

20.
以湍流控制器加单坝结构的FTSC中间包为原型,采用气-液-固三相流数值模拟手段,研究了气幕挡墙对不同粒径夹杂物的去除情况.结果表明,中间包气幕挡墙能够改善钢液的流动特性,提高夹杂物的去除率,尤其对小颗粒夹杂物,去除效果更明显.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号