首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photocatalytic oxidation of benzene in air was carried out over TiO2/Sr2CeO4 catalysts. The prepared photocatalyst was characterized by SBET, UV-vis diffuse reflectance and XPS. TiO2/Sr2CeO4 absorbs much more visible light than TiO2 in the visible light region. The XPS spectrum shows that the binding energy value of Ti 2p3/2 transfers to a lower value. The main purpose was to investigate the kinetic model and degradation mechanisms. The kinetic data matched well with the Langmuir-Hinshelwood (L-H) kinetic model with the limiting rate constant and the adsorption constant in this case were 0.0064 mg l-1 min-1 and 9.2078 l mg-1, respectively. No gas-phase intermediates were detected by direct GC/FID analysis under the conditions despite the high benzene concentration. Ethyl acetate and (3-methyl-oxiran-2-yl)-methanol were two major identified intermediates which were accompanied by butylated hydroxytoluene, 2,6-bis(1,1-dimethylethyl)-4,4-dimethylycyclohe, 2,5-cyclohexadiene-1,4,dione,2,6-bis(1,1-dim). It is plausible that at least one of these less-reactive intermediates caused the deactivation of the photocatalyst. Finally, the photocatalytic oxidation mechanisms were speculated.  相似文献   

2.
The paper demonstrates that the photocatalytic activity of TiO2 towards the decomposition of gaseous benzene in a batch reactor can be greatly improved by loading TiO2 on the surface of CeO(2)-ZrO(2). The research investigates the effects of three metals doping into Ce(0.5)Zr(0.5)O(2) on photocatalytic activity of TiO2/Ce(0.45)Zr(0.45)M(0.1)O(X) (M=Y, La, Mn). The prepared photocatalysts were characterized by BET, XRD, UV-vis diffuse reflectance and XPS analyses. BET surface area of TiO2/Ce(0.45)Zr(0.45)M(0.1)O(X) (M=Y, La, Mn) is smaller than that of Ce(0.5)Zr(0.5)O(2). XRD results reveal that the deposited titania is highly dispersed as in the CeO(2)-ZrO(2) matrix, doping M in the CeO(2)-ZrO(2) lattice causes the changing of lattice space and the diffraction peaks shift to higher 2theta position. Among these four catalysts, the band gap value of TiO(2)/Ce(0.45)Zr(0.45)La(0.1)O(X) is the lowest. The binding energy value of Ti 2p(3/2) of four catalysts transfers to a lower value. The order of photocatalytic activity is TiO2/Ce(0.45)Zr(0.45)La(0.1)O(X)>TiO2/Ce(0.45)Zr(0.45)Y(0.1)O(X)>TiO2/Ce(0.45)Zr(0.45)Mn(0.1)O(X)>TiO2/Ce(0.5)Zr(0.5)O(2)>TiO2. The proposed mechanism is of electron transfer and the stronger absorption in the region 210-400 nm.  相似文献   

3.
To further improve the photocatalytic techniques for water purification and wastewater treatment, we successfully prepared a new type of TiO(2)/Ti mesh photoelectrode, by anodization in ethylene glycol solution. The three-dimensional arrays of nanotubes formed on Ti mesh show a significant improvement in photocatalytic activity, compared to the nanotube arrays formed on foil. This can be demonstrated by about 22 and 38% enhancement in the degradation efficiency per mass and per area, respectively, when TiO(2)/Ti mesh electrode was used to photocatalyze methyl orange (MO). Furthermore, the effects of different parameters on MO photodegradation were investigated, such as different photoelectrode calcination temperature, the initial pH value of MO solution, and the present of hydrogen peroxide. The superior photocatalytic activity could be achieved by the TiO(2)/Ti mesh photoelectrode calcinated at 550 °C, due to the appearance of mixed crystal phases of anatase and rutile. In strong acidic or caustic conditions, such as pH 1 or 13, a high degradation efficiency can be both obtained. The presence of H(2)O(2) in photocatalytic reactions can promote photocatalytic degradation efficiencies. Moreover, the experimental results demonstrated the excellent stability and reliability of the TiO(2)/Ti mesh electrode.  相似文献   

4.
TiO(2) and sulfated TiO(2) (SO(4)(2-)/TiO(2)) catalysts with different textural properties were prepared under different calcination temperatures and the photo-reduction of Cr(VI) to Cr(III) catalyzed by these catalysts was investigated. For the photocatalytic reduction of Cr(VI), the photocatalytic activities of the TiO(2) samples were found to be strongly dependent of the calcination temperature and TiO(2) calcined at 400 degrees C showed a higher catalytic activity compared to other TiO(2) catalysts. In contrast, sulfation of TiO(2) stabilized the catalytic activities of SO(4)(2-)/TiO(2) catalysts. At low calcination temperature, SO(4)(2-)/TiO(2) catalysts exhibited catalytic activities almost comparable with that of TiO(2) and the catalytic activities of SO(4)(2-)/TiO(2) catalysts were markedly higher than TiO(2) under high calcination temperature. In addition, the removal of surface SO(4)(2-) of SO(4)(2-)/TiO(2) catalyst led to a marked decrease of the catalytic activity for Cr(VI) photo-reduction, suggesting that the presence of surface SO(4)(2-) provided an acid environment over the catalyst surface and favored the photo-reduction of Cr(VI).  相似文献   

5.
Sulfur-doped TiO(2)/Ti photoelectrodes were prepared by anodization and characterized by SEM, AFM, XRD, XPS, UV-vis and SPS. The results of investigation indicated that S(4+) and S(6+) were dispersed on the surface of TiO(2) nanoparticles. The doping with an appropriate amount of sulfur expanded the response range of TiO(2)/Ti photoelectrodes to visible light, and enhanced the separation of photoinduced electrons from cavities. The photoelectrocatalytic performance test run with sulfur-doped TiO(2)/Ti photoelectrodes under Xenon light indicated that Na(2)SO(3) concentration of 750 mg/L and voltage of 160 V were the optimal conditions for preparation of sulfur-doped TiO(2)/Ti photoelectrodes.  相似文献   

6.
Yen CY  Lin YF  Hung CH  Tseng YH  Ma CC  Chang MC  Shao H 《Nanotechnology》2008,19(4):045604
This study investigates the microstructures of multi-walled carbon nanotubes (MWNTs)/TiO(2) nanocomposites, obtained by sol-gel and hydrothermal processes. The synthesized nanocomposite materials were characterized by x-ray diffractometry (XRD), Brunauer-Emmett-Teller (BET) adsorption analysis, transmittance electron microscopy (TEM), scanning electron microscopy (SEM), photoluminescence (PL) spectroscopy, and x-ray photoelectron spectroscopy (XPS). The effects of the synthetic procedures and MWNTs on the morphology and photocatalytic activity of the nanocomposites were studied. The photocatalytic activity of the MWNTs/TiO(2) nanocomposite was elucidated based on the photooxidation of NO(x) under UV light illumination. A fleck-like and well dispersed TiO(2) microstructure on the surface of the MWNTs was observed in the sol-gel system, while compact and large aggregated particles were found in the hydrothermal procedure. The nanocomposite prepared by the sol-gel system exhibits better photocatalytic activity for NO oxidation (from 20.52 to 32.14%) than that prepared by the hydrothermal method (from 22.58 to 26.51%) with the same MWNT loading (from 0 to 8?wt%), respectively. The optimal MWNT content in the nanocomposite was considered at 8?wt%. Additionally, results confirm that the introduction of MWNTs will cause the NO(2) to be more consumed than NO in the photocatalytic experiments, leading to more complete NO(x) photooxidation. These observations indicate that the different TiO(2) distributions on the MWNT surfaces and MWNT contents in the materials would determine the morphology, the physicochemical and photocatalytic characteristics for the nanocomposite materials.  相似文献   

7.
Xue M  Huang L  Wang JQ  Wang Y  Gao L  Zhu JH  Zou ZG 《Nanotechnology》2008,19(18):185604
A series of visible-light-driven mesoporous structured MnO(2)/TiO(2) nanocrystal photocatalysts have been synthesized through a modified sol-gel method, and the N(2) adsorption-desorption isotherm confirms that the mesoporous materials possess large pore size (up to 9.2?nm) and a narrow pore size distribution. X-ray powder diffraction (XRD) analyses and complementary x-ray photoelectron spectroscopy (XPS) measurements reveal that the doping of the transition metal Mn inhibits the growth of TiO(2) anatase nanocrystals and the Mn species are highly dispersed on the surface of TiO(2). The ultraviolet (UV)-vis spectrum demonstrates the excellent adsorption properties of MnO(2)/TiO(2) over the whole region of visible light, which enables this novel photocatalysis material to possess remarkable activity in the photocatalytic degradation of methylene blue under visible light radiation. Moreover, a 'coating mechanism' based on the nucleation of titania nanocrystals along with the interaction between the dopant precursors and titania clusters has been suggested.  相似文献   

8.
N-S-codoped anatase nanosized TiO(2) photocatalyst (NSTO) was successfully prepared by one-step hydrothermal method from a mixed aqueous solution of Ti(SO(4))(2) and thiourea. The samples were characterized by XRD, UV-vis, XPS, FT-IR and EA. From results of UV-vis, a red shift of the absorption edge was brought out owing to N and S codoping, and the extension for photoabsorption range of NSTO occurred. XRD, XPS, EA and FT-IR studies revealed that N and S were in situ codoped in the lattice of TiO(2) and N concentration decreased from the surface to the center of NSTO. Especially, the photocatalytic tests indicated that NSTO exhibited a high activity for decompositions of methyl orange both under UV-light and vis-light irradiation comparing to S-doped TiO(2) (STO) and undoped TiO(2) (TO). The high activity of NSTO can be related to the results of the synergetic effects of strong absorption in the UV-vis region, red shift in adsorption edge, oxygen vacancies and the enhancement of surface acidity induced by N and S codoping.  相似文献   

9.
A novel magnetic separable composite photocatalytic nanofiber consisting of TiO2 as the major phase, CeO(2-y) and CoFe2O4 as the dopant phase was prepared by sol-gel method and electrospinning technique, and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-vis diffuse reflectance spectrum (UV-vis DRS) and vibrating sample magnetometer (VSM). The photocatalytic activity of the resultant CoFe2O4-TiO2 and CeO(2-y)/CoFe2O4-TiO2 nanofibers was evaluated by photodegradation of methylene blue (MB) in an aqueous solution under xenon lamp (the irradiation spectrum energy distribution is similar to sunlight) irradiation in a photochemical reactor. The results showed that the dopant of Ce could affect the absorbance ability and photo-response range. The sample containing 1.0 wt% CeO(2-y) exhibited the highest degradation with 35% for MB under simulate solar light irradiation. Furthermore, the as-synthesized composite photocatalytic nanofibers could be separated easily by an external magnetic field, thus it might hold potential for application in wastewater treatment.  相似文献   

10.
A series of nitrogen and erbium co-doped TiO2 photocatalyst was prepared by sol-hydrothermal method. The structure and properties of the photocatalyst were characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) method, X-ray photoelectron spectroscopy (XPS), and UV-vis diffuse reflectance spectra (DRS). The XRD and BET results showed that co-doping inhibited the increase of crystallite size and enlarged specific surface areas. XPS spectroscopy indicated nitrogen atoms were incorporated into TiO2 lattice, and erbium atoms mostly existed in the forms of Er2O3. A shift of the absorption edge to the lower energy and four absorption bands located at 654, 544, 524 and 489 nm attributed to the 4f transitions of 4I15/2 --> 4F2/9, 4I15/2 --> 4S3/2, 4I15/2 --> 2H11/2, 4I15/2 --> 4F7/2 of Er3+ were observed using DRS spectroscopy. The catalytic efficency was evaluated by the photocatalytic degradation of methyl orange (MO) under visible light irradiation. The results showed that the photocatalytic performance of the co-doped TiO2 was related with the hydrothermal temperature and the molar ratio of N/Ti, and they showed higher acitivites than pure TiO2. Results determined by fluorescence technique revealed that irradiation (lambda > 400 nm) of TiO2 photocatalyst dispersed in MO solution induces the generation of the highly active hydroxyl radicals (OH). It indicated the photocatalytic activities of TiO2 photocatalyst were correlation with the formation rate of hydroxyl radicals (OH) and other active oxygen species.  相似文献   

11.
SnO2/TiO2 composite films were fabricated on transparent electro-conductive glass substrates (F-doped SnO2-coated glass:FTO glass) via an electrophoretic deposition (EPD) method using Degussa P25 as raw materials, and were further characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscope (FESEM), UV-vis diffuse reflectance spectra and Photoluminescence spectra (PL). XRD and XPS results confirmed that the films were composed of TiO2 and SnO2. FESEM images indicated that the as-prepared TiO2 films had roughness surfaces, which consisted of nano-sized particles. The effects of calcination temperatures on the surface morphology, microstructures and photocatalytic activity of SnO2/TiO2 composite films were further investigated. All the prepared SnO2/TiO2 composite films exhibited high photocatalytic activities for photocatalytic decolorization of Rhodamine-B aqueous solution. At 400 degrees C, the SnO2/TiO2 composite films showed the highest photocatalytic activity due to synergetic effects of low sodium content, good crystallization, appropriate phase composition and slower recombination rate of photogenerated charge carriers.  相似文献   

12.
张文杰  于杨  李可心 《功能材料》2012,43(10):1308-1311,1315
以不同浓度磷酸改性的HZSM-5为载体,采用溶胶-凝胶法制备得到TiO2/HZSM-5光催化剂,通过XRD、SEM、BET、FT-IR和XPS进行表征。结果表明,磷酸处理没有改变分子筛的晶体结构,对分子筛的表面形貌改变不大,负载后的TiO2包覆在分子筛表面。负载前后的TiO2表现为锐钛矿晶型,钛以四价钛的形式存在,氧化物的组成为TiO2。TiO2与HZSM-5没有发生化学键合作用,负载型光催化剂的比表面积随着磷酸浓度的增加而显著提高。活性艳红X-3B的降解率随磷酸浓度的增加而变化,最佳磷酸处理浓度为0.5mol/L。50%TiO2/0.5HZSM-5较TiO2有更高的光催化活性,紫外光照射2h可使活性艳红X-3B降解93.4%,而染料在TiO2上的降解率只有61.0%。  相似文献   

13.
以钛酸四丁酯为前驱体,采用水解.沉淀法制备纳米TiO2,再将其负载于海泡石上制得TiO2/海泡石催化剂,用X射线衍射和扫描电子显微镜对载体催化剂的形貌及晶型进行了分析.以紫外光为光源,在水溶液中以环境激素邻苯二甲酸二乙酯(DEP)为降解底物进行光催化性能的研究.结果表明:催化剂的用量和TiO2的负载量对光催化降解速率都有影响.其中TiO2/海泡石催化剂的用量起主要作用,更能影响其光催化速度及DEP的降解.当催化剂用量为4g/L、TiO2负载量为30%时,TiO2/海泡石催化剂的催化效果较好.  相似文献   

14.
Bare TiO2 (T), La-doped TiO2 (LT), Y-doped TiO2 (YT), La, Y co-doped TiO2 (LYT) were successfully prepared by facile ultrasonic assisted sol-gel synthesis using Ti(OC4H9)4 as the precursor. The products were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), UV-visible diffuse reflectance spectra (DRS), and X-ray photoelectron spectroscopy (XPS), respectively. The photocatalytic activities of anatase samples, with the average particle diameters ranging from 14 nm to 21 nm, were evaluated for photodegradation of methyl orange (MO). The XPS results indicated that Y atoms were incorporated into titania lattice, while La atoms existed on the crystal surface. Due to doping, the optical absorption edges of LT, YT, and LYT shifted to the visible light region by 21 nm, 29 nm and 35 nm, respectively. The photocatalytic performances of the doped samples, such as LT, YT and LYT, were much higher than that of bare TiO2 under UV-visible light irradiation. And the photoreactivity efficiency of the LYT was the highest. It indicated that a strong La-Y synergistic interaction appeared to play a decisive role in driving the excellent photocatalytic performance of titania.  相似文献   

15.
以Cu(OH)_2纳米棒阵列为前驱体,钛酸四丁酯为钛源,采用外向包覆合成法,利用Cu(OH)_2自身热分解产生的微量水分子与负载在其表面的钛酸四丁酯缓慢反应,制备了CuO/TiO_2异质多孔纳米结构,并研究了产物对罗丹明B(RhB)的光催化降解性能。结果表明,得到的产物薄膜为直径2~4μm的微孔组成的多孔纳米结构,微孔的孔壁由直径500nm左右的纳米棒组装而成。产物CuO/TiO_2异质多孔纳米结构比纯TiO_2纳米结构对RhB有更好的光催化降解性能,这主要是由两方面的原因引起的:一方面,CuO/TiO_2异质多孔纳米结构具有更好的吸附性能和更大的比表面积;另一方面,产物CuO/TiO_2为异质复合纳米结构,异质结的存在能有效地降低光生电子空穴对的复合,从而提高产物的光催化降解效果。  相似文献   

16.
Highly crystalline Pt nanoparticles with an average diameter of 5 nm were homogeneously modified on the surfaces of TiO(2) nanowires (Pt-TiO(2) NWs) by a simple hydrothermal and chemical reduction route. Photodegradation of methylene blue (MB) in the presence of Pt-TiO(2) NWs indicates that the photocatalytic activity of TiO(2) NWs can be greatly enhanced by Pt nanoparticle modification. The physical chemistry process and photocatalytic mechanism for Pt-TiO(2) NWs hybrids degrading MB were investigated and analyzed. The Pt attached on TiO(2) nanowires induces formation of a Schottky barrier between TiO(2) and Pt naonoparticles, leading to a fast transport of photogenerated electrons to Pt particles. Furthermore, Pt incoporation on TiO(2) surface can accelerate the transfer of electrons to dissolved oxygen molecules. Besides enhancing the electron-hole separation and charge transfer to dissolved oxygen, Pt may also serve as an effective catalyst in the oxidation of MB. However, a high Pt loading value does not mean a high photocatalytic activity. Higher content loaded Pt nanoparticles can absorb more incident photons which do not contribute to the photocatalytic efficiency. The highest photocatalytic activity for the Pt-TiO(2) nanohybrids on MB can be obtained at 1 at % Pt loading.  相似文献   

17.
A series of Si-doped TiO2 (Si/TiO2) photocatalysts supported on woven glass fabric were prepared by hydrothermal method for photocatalytic reduction of NO with NH3. The photocatalytic activity tests were carried out in a continuous Pyrex reactor with the flow rate of 2000mL/min under UV irradiation (luminous flux: 1.1x10(4)lm, irradiated catalyst area: 160cm2). The photocatalysts were characterized by X-ray diffraction (XRD), BET, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT-IR) spectrophotometer, transmission electron microscopy (TEM), photoluminescence (PL) and temperature-programmed desorption (TPD). The experiment results showed that NO conversion on Si/TiO2 at 323K could exceed 60%, which was about 50% higher than that on Degussa P25 and pure TiO2. With the doping of Si, photocatalysts with smaller crystal size, larger surface area and larger pore volume were obtained. It was also found that Ti-O-Si bands were formed on the surface of Si/TiO2 and that the surface hydroxyl concentration was greatly increased. As a result, total acidity and NH3 chemisorption amount were enhanced for Si/TiO2 leading to its photocatalytic activity improvement.  相似文献   

18.
TiO2 was deposited on high surface area porous silica gel (400 m2g(-1)) in a fluidized bed reactor. Chemical vapor deposition was employed for the coating under vacuum conditions with TiCl4 as precursor. Nitrogen physisorption, X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy and UV-vis spectroscopy were applied to characterize the obtained TiO2-SiO2 composites with different Ti loadings up to 5 wt%. Only a slight decrease in the specific surface area was detected at low Ti loadings. At a Ti loading of 2 wt%, TiO2 was found to be highly dispersed on the SiO2 surface likely in form of a thin film. At higher Ti loadings, two weak reflections corresponding to anatase TiO2 were observed in the diffraction patterns indicating the presence of crystalline bulk TiO2. High resolution XPS clearly distinguished two types of Ti species, i.e., Ti-O-Si at the interface and Ti-O-Ti in bulk TiO2. The presence of polymeric TiOx species at low Ti loadings was confirmed by a blue shift in the UV-vis spectra as compared to bulk TiO2. All these results point to a strong interaction between the TiO2 deposit and the porous SiO2 substrate especially at low Ti loadings.  相似文献   

19.
甘氨酸燃烧法合成Sr2CeO4及其发光性质研究   总被引:2,自引:0,他引:2  
为制备具有优良性能的蓝色荧光粉,首次采用甘氨酸-硝酸盐燃烧法合成了Sr2CeO4,利用热重-差热分析仪、X射线粉末衍射仪、扫描电镜等技术对其形成过程、物相结构、形貌粒度、发光性质进行了研究.结果表明:燃烧后的前驱物经800℃焙烧已有目标产物Sr2CeO4生成,1100℃时可得到较纯正交晶系的Sr2CeO4相.颗粒的形貌为不规则球形,平均粒径在80 nm左右.发光性质研究表明:Sr2CeO4荧光粉的激发光谱是宽带双峰结构,此宽带属于Ce4+的电荷迁移带,两个峰分别位于305 nm和348 nm,后者为主峰.用348 nm紫外光激发样品,发出明亮的蓝光,其发射光谱也是一个宽带,最大峰位于470 nm,此峰属于Ce4+的f→t1g跃迁.发光强度在800~1100℃随温度升高而增强.  相似文献   

20.
Highly photoactive nanocrystalline mesoporous Fe-doped TiO(2) powders were prepared by the ultrasonic-induced hydrolysis reaction of tetrabutyl titanate (Ti(OC(4)H(9))(4)) in a ferric nitrate aqueous solution (pH 5) without using any templates or surfactants. The as-prepared samples were characterized by thermogravimetry and differential thermal analysis (TG-DTA), X-ray diffraction (XRD), N(2) adsorption-desorption measurements, UV-visible adsorbance spectra (UV-vis) and X-ray photoelectron spectroscopy (XPS). The photocatalytic activities were evaluated by the photocatalytic oxidation of acetone in air. The results showed that all the Fe-doped TiO(2) samples prepared by ultrasonic methods were mesoporous nanocrystalline. A small amount of Fe(3+) ions in TiO(2) powders could obviously enhance their photocatalytic activity. The photocatalytic activity of Fe-doped TiO(2) powders prepared by this method and calcined at 400 degrees C exceeded that of Degussa P25 (P25) by a factor of more than two times at an optimal atomic ratio of Fe to Ti of 0.25. The high activities of the Fe-doped TiO(2) powders could be attributed to the results of the synergetic effects of Fe-doping, large BET specific surface area and small crystallite size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号