首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zerodur and BK7 glass substrates (developed by Fa. Glaswerke Schott, D-55014 Mainz, Germany) from Carl Zeiss Oberkochen polished to a standard surface roughness of varsigma = 0.8 nm rms were coated with a C layer by electron-beam evaporation in the UHV. The roughness of the C-layer surfaces is reduced to 0.6 nm rms. A normal-incidence reflectance of 50% at a wavelength of 13 nm was measured for a Mo/Si multilayer soft-x-ray mirror with 30 double layers (N = 30) deposited onto the BK7/C substrate, whereas a similar Mo/Si multilayer (N = 30) evaporated directly onto the bare BK7 surface turned out to show a reflectance of only 42%.  相似文献   

2.
Derek S. Smith 《Thin solid films》2010,518(14):3772-3777
We report the attainment of surface plasmon-coupled emission (SPCE) from highly uniform thin silver films, solution-deposited on glass substrates by a wet chemistry approach. The surface morphology of these films was characterized by atomic force microscopy. The SPCE emission enhancements, polarization and angularity obtained from solution-deposited silver on BK7 glass were comparable to that achieved from conventional SPCE slides prepared via vapor deposition. This facile, wet chemistry procedure for the deposition of SPCE films provides an inexpensive, low maintenance alternative to vapor deposition for SPCE substrate preparation. This would allow the fluorescence observation technique to become more readily available for high sensitivity, low cost applications.  相似文献   

3.
Wang X  Masumoto H  Someno Y  Chen L  Hirai T 《Applied optics》2001,40(22):3746-3752
A combination of stepwise graded refractive-index profiles and a cavity structure is used for designing narrow-bandpass filters of TiO(2)/SiO(2) multilayer films upon BK7 glass substrates. Symmetrical profiles of stepwise graded refractive indices result in high transmittance of passbands for the designed filters. The bandwidth of the narrow-bandpass filter is controlled by adjustment of parameters such as the thickness and the number of layers in the multilayer stack. This design is proposed as a new and simple method for coating synthesis of optical filters.  相似文献   

4.
Wei Y  Liu H  Sheng O  Liu Z  Chen S  Yang L 《Applied optics》2011,50(24):4720-4727
Research on thin film deposited by atomic layer deposition (ALD) for laser damage resistance is rare. In this paper, it has been used to deposit TiO(2)/Al(2)O(3) films at 110 °C and 280 °C on fused silica and BK7 substrates. Microstructure of the thin films was investigated by x-ray diffraction. The laser-induced damage threshold (LIDT) of samples was measured by a damage test system. Damage morphology was studied under a Nomarski differential interference contrast microscope and further checked under an atomic force microscope. Multilayers deposited at different temperatures were compared. The results show that the films deposited by ALD had better uniformity and transmission; in this paper, the uniformity is better than 99% over 100 mm Φ samples, and the transmission is more than 99.8% at 1064 nm. Deposition temperature affects the deposition rate and the thin film microstructure and further influences the LIDT of the thin films. As to the TiO(2)/Al(2)O(3) films, the LIDTs were 6.73±0.47 J/cm(2) and 6.5±0.46 J/cm(2) at 110 °C on fused silica and BK7 substrates, respectively. The LIDTs at 11 °C are notably better than 280 °C.  相似文献   

5.
The successful covalent functionalization of quartz and n-type 6H-SiC with organosilanes and benzo[ghi]perylene-1,2-dicarboxylic dye is demonstrated. In particular, wet-chemically processed self-assembled layers of aminopropyltriethoxysilane (APTES) and benzo[ghi]perylene-1,2-dicarboxylic anhydride are investigated. The structural and chemical properties of these layers are studied by contact angle measurements, attenuated total reflection infrared (ATR-IR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). The optical properties are measured by confocal microscopy. The wetting angles observed for the organic layers are α = 68° for the APTES-functionalized surface, while angles of α = 85° and 78° are determined for dye-functionalized quartz and 6H-SiC surfaces, respectively. However, not all amino groups of the APTES-functionalized surfaces react to bind dye molecules. Further dye functionalization is not uniform throughout the surface, showing different island sizes of the dye and including different chemical environments. The quartz surface exhibits a higher packing density of dyes than the 6H-SiC surface. The fluorescence lifetimes of the surface-attached dye show double exponential decays of about 1.4 and 4.2 ns, largely independent of the substrates.  相似文献   

6.
Wolfe JE  Qiu SR  Stolz CJ 《Applied optics》2011,50(9):C457-C462
Femtosecond laser machining is used to create mitigation pits to stabilize nanosecond laser-induced damage in multilayer dielectric mirror coatings on BK7 substrates. In this paper, we characterize features and the artifacts associated with mitigation pits and further investigate the impact of pulse energy and pulse duration on pit quality and damage resistance. Our results show that these mitigation features can double the fluence-handling capability of large-aperture optical multilayer mirror coatings and further demonstrate that femtosecond laser macromachining is a promising means for fabricating mitigation geometry in multilayer coatings to increase mirror performance under high-power laser irradiation.  相似文献   

7.
We report the use of grazing-angle attenuated total reflectance (GATR) IR and polarized UV-vis to determine the molecular structure of porphyrin based molecular multilayer films grown in a layer-by-layer (LbL) fashion using copper-catalyzed azide-alkyne cycloaddition (CuAAC). The molecular orientation and bonding motif present in multilayer films of this type could impact their photophysical and electrochemical properties as well as potential applications. Multilayer films of M(II) 5,10,15,20-tetra(4-ethynylphenyl)porphyrin (1 M = Zn, 2 M = Cu) and azido based linkers 3-5 were used to fabricate the films on ITO substrates. Electrochemically determined coverage of films containing 2 match the trends observed in the absorbance. GATR-IR spectral analysis of the films indicate that CuAAC reactivity is leading to 1,4-triazole linked multilayers with increasing porphyrin and linker IR characteristic peaks. Films grown using all azido-linkers (3-5) display an oscillating trend in azide IR intensity suggesting that the surface bound azido group reacts with 1 and that further layering can occur through additional reaction with linkers, regenerating the azide surface. Films containing linker 5 in particular show an overall increase in azide content suggesting that only two of the three available groups react during multilayer fabrication, causing an overall buildup of azide content in the film. Films of 1 with linker 3 and 5 showed an average porphyrin plane angle of 46.4° with respect to the substrate as determined by GATR FT-IR. Polarized UV-vis absorbance measurements correlate well with the growth angle calculated by IR. The orientation of the porphyrin plane within the multilayer structures suggests that the CuAAC-LbL process results in a film with a trans bonding motif.  相似文献   

8.
Surface plasmon-coupled emission (SPCE) phenomenon is the coupling of excited fluorophores near a silver film with surface plasmons, resulting in directional emission into the underlying glass substrates. We report a complex coupling of Nile Blue fluorophore with 50 nm silver mirror, resulting in emission at several angles in the glass substrate, with either s or p polarization. This complex pattern of directional and polarized emission appears to be due to optical waveguide effects occurring when the sample thickness becomes comparable to the emission wavelength. We expect waveguide-modulated SPCE to have applications to biophysics and sensing.  相似文献   

9.
Perla SR  Azzam RM 《Applied optics》2007,46(21):4604-4612
A centrosymmetric multilayer stack of two transparent thin-film materials, which is embedded in a high-index prism, is designed to function as an efficient polarizer or polarizing beam splitter (PBS) under conditions of frustrated total internal reflection over an extended range of incidence angles. The S(LH)(k)LHL(HL)(k)S multilayer structure consists of a high-index center layer H sandwiched between two identical low-index films L and high-index-low-index bilayers repeated (k times) on both sides of the central trilayer maintaining the symmetry of the entire stack. For a given set of refractive indices, all possible solutions for the thicknesses of the layers that suppress the reflection of p-polarized light at a specified angle, and the associated reflectance of the system for the orthogonal s polarization, are determined. The angular and spectral sensitivities of polarizing multilayer stacks employing 3, 7, 11, 15, and 19 layers of BaF(2) and PbTe thin films embedded in a ZnS prism, operating at lambda=10.6 microm, are presented. The 15- and 19-layer stack designs achieve extinction ratios (ER) >30 dB in both reflection and transmission over a 46 degrees -56 degrees field of view inside the prism. Spectral analysis reveals additional discrete polarizing wavelengths other than the design wavelength (lambda=10.6 microm). The 11-, 15-, and 19-layer designs function as effective s-reflection polarizers (|R(s)|(2)>99%) over a 2-3 microm bandwidth. The effect of decreasing the refractive index contrast between the H and L layers on the resulting ER is also considered.  相似文献   

10.
2D nanocarbon‐based materials with controllable pore structures and hydrophilic surface show great potential in electrochemical energy storage systems including lithium sulfur (Li–S) batteries. This paper reports a thermal exfoliation of metal–organic framework crystals with intrinsic 2D structure into multilayer graphene stacks. This family of nanocarbon stacks is composed of well‐preserved 2D sheets with highly accessible interlayer macropores, narrowly distributed 7 Å micropores, and ever most polar pore walls. The surface polarity is quantified both by its ultrahigh water vapor uptake of 14.3 mmol g?1 at low relative pressure of P /P 0 = 0.4 and ultrafast water wetting capability in less than 10.0 s. Based on the structural merits, this series hydrophilic multilayer graphene stack is showcased as suitable model cathode host for unveiling the challenging surface chemistry issue in Li–S batteries.  相似文献   

11.
Shen Z  Ding T  Ye X  Wang X  Ma B  Cheng X  Liu H  Ji Y  Wang Z 《Applied optics》2011,50(9):C433-C440
The cleaning process of optical substrates plays an important role during the manufacture of high-power laser coatings. Two kinds of substrates, fused silica and BK7 glass, and two cleaning processes, called process 1 and process 2 having different surfactant solutions and different ultrasonic cleaning parameters, are adopted to compare the influence of the ultrasonic cleaning technique on the substrates. The evaluation standards of the cleaning results include contaminant-removal efficiency, weak absorption, and laser-induced damage threshold of the substrates. For both fused silica and BK7, process 2 is more efficient than process 1. Because acid and alkaline solutions can increase the roughness of BK7, process 2 is unsuitable for BK7 glass cleaning. The parameters of the cleaning protocol should be changed depending on the material of the optical components and the type of contamination.  相似文献   

12.
A centrosymmetric multilayer stack of two transparent materials, which is embedded in a high-index prism, can function as a complete-transmission quarter-wave or half-wave retarder (QWR or HWR) under conditions of frustrated total internal reflection. The multilayer consists of a high-index center layer sandwiched between two identical low-index films with high-index-low-index bilayers repeated on both sides of the central trilayer, maintaining the symmetry of the entire stack and constituting a QWR (Delta(t)=90 degrees or 270 degrees ) or HWR (Delta(t)=180 degrees ) in transmission. A QWR design at wavelength lambda=1.55 microm is presented that employs an 11-layer stack of Si and SiO(2) thin films, which is embedded in a GaP cube prism. The intensity transmittances for the p and s polarizations remain >99% and Delta(t) deviates from 90 degrees by <+/-3 degrees over a 100 nm spectral bandwidth (1.5< or =lambda< or =1.6 microm), and by < or =+/-7 degrees over an internal field view of +/-1 degrees (incidence angle 44 degrees < or = phi(0)< or =46 degrees inside the prism). An HWR design at lambda=1.55 microm employs seven layers of Si and SiO(2) thin films embedded in a Si cube, has an average transmittance >93%, and Delta(t) that differs from 180 degrees by <+/-0.3 degrees over a 100 nm bandwidth (1.5< or =lambda< or =1.6 microm) and by <+/-17 degrees over an internal field view of +/-1 degree . The sensitivity of these devices to film-thickness errors is also considered.  相似文献   

13.
Barthelmess M  Bajt S 《Applied optics》2011,50(11):1610-1619
Wavelength, reflectance, and stress stability of Mo/B(4)C multilayers were studied as a function of postdeposition annealing up to 900 °C. These multilayers are of interest as normal incidence coatings for wavelengths above the boron K-absorption edge. Mo/B(4)C multilayers deposited at low sputtering pressure have high compressive stress. Zero stress can be achieved at 360 °C-370 °C, but annealing at <200 °C is sufficient to reduce stress by ~40%. This stress relaxation is accompanied with a multilayer period expansion of ~0.02 nm and a <0.5% decrease in normal incidence reflectivity. The multilayer period remains stable up to ~600 °C, while intrinsic stress changes from compressive to tensile. A four-layer model with amorphous molybdenum and boron carbide layers separated by amorphous layers of molybdenum borides (Mo(x)B(y)) is presented. These interlayers are present already in the as-deposited state and continue to grow with increasing temperature. Their presence lowers the optical contrast and the achievable reflectivity. However, they also increase multilayer thermal stability. At temperatures >600 °C, a noticeable decrease in reflectivity associated with the phase transition from amorphous to crystalline molybdenum boride is observed. This is accompanied with an increase in interface and surface roughness and a change in stress as a function of temperature.  相似文献   

14.
We described an immunoassay for the cardiac marker myoglobin on a thin silver mirror surface using surface plasmon-coupled emission (SPCE). SPCE occurs for fluorophores in proximity (within approximately 200 nm) of a thin metal film (in our case, silver) and results in a highly directional radiation through a glass substrate at a well-defined angle from the normal axis. We used the effect of SPCE to develop a myoglobin immunoassay on the silver mirror surface deposited on a glass substrate. Binding of the labeled anti-myoglobin antibodies led to the enhanced fluorescence emission at a specific angle of 72 degrees . The directional and enhanced directional fluorescence emission enables detection of myoglobin over a wide range of concentrations from subnormal to the elevated level of this cardiac marker. Utilizing SPCE allowed us also to demonstrate significant background suppression (from serum or whole blood) in the myoglobin immunoassay. We expect SPCE to become a powerful technique for performing immunoassays for many biomarkers in surface-bound assays.  相似文献   

15.
Surface plasmon-coupled emission (SPCE) is the directional radiation of light into a substrate due to excited fluorophores above a thin metal film. To date, SPCE has only been observed with visible wavelengths using silver or gold films. We now show that SPCE can be observed in the ultraviolet region of the spectrum using thin (20 nm) aluminum films. We observed directional emission in a quartz substrate from the DNA base analogue 2-aminopurine (2-AP). The SPCE radiation occurs within a narrow angle at 59 degrees from the normal to the hemicylindrical prism. The excitation conditions precluded the creation of surface plasmons by the incident light. The directional emission at 59 degrees is almost completely p-polarized, consistent with its origin from surface plasmons due to coupling of excited 2-AP with the aluminum. The emission spectra and lifetimes of the SPCE are those characteristic of 2-AP. Different emission wavelengths radiate at slightly different angles on the prism providing intrinsic spectral resolution from the aluminum film. These results indicate that SPCE can be used with numerous UV-absorbing fluorophores, suggesting biochemical applications with simultaneous surface plasmon resonance and SPCE binding assays.  相似文献   

16.
We demonstrate that solarization occurs in glass substrates during thin-film deposition and that it induces high absorption near the surface of the substrate. Solarization has been observed especially in ion-plating deposition. We show that the solarization of the substrate is caused by electromagnetic radiation emitted from the material to be evaporated. The radiation is due to the energy losses of the heating beam of electrons (bremsstrahlung radiation). Multicomponent glasses such as BK7 are much more sensitive to solarization than fused-silica substrates. The photoinduced high absorption can be partially reversed by thermal annealing.  相似文献   

17.
A series of metal cutting experiments was performed on a CNC lathe to evaluate the performance of various coatings on different tool substrates. The workpiece material was plain medium carbon steel and the cutting tool materials were carbide and cermet inserts coated with various single as well as multilayer coatings. Machining was done under various cutting conditions of speed and feed-rate, and for various durations of Cutting. The output parameters studied were the cutting forces (axial, radial and tangential), the surface roughness of the workpiece, as well as the tool wear (crater and flank wear). From these results, the performances of the various cutting inserts are evaluated and compared. Results show that cutting forces are significantly lower when using coated cermets than when using coated carbides although different coatings on the same substrate also result in different cutting forces. However, there is less difference in the surface roughness of the finished workpiece for the various coatings and substrates.  相似文献   

18.
The reflectance of a W-B(4)C multilayer mirror, with a period thickness that increased with depth into the multilayer, was measured at near-normal incidence with synchrotron radiation and at grazing incidence with Cu Kα radiation. The period thickness increased linearly from 17.9 ? at the top of the multilayer structure to 21.9 ? at the substrate while the same ratio of nodal layer to period thickness was maintained. For a grazing angle of 80° (10° from normal incidence), the peak reflectance was 1.1% at a wavelength of 36 ?, and the reflectance profile was 1 ? wide. For Cu Kα radiation the reflectance peaked at a grazing angle of 2.4° and was 0.4° wide. Compared with a W-B(4)C multilayer mirror with a constant period thickness, the depth-graded multilayer mirror has wider reflectance profiles at near-normal and grazing incidences, resulting in larger integrated reflectances and wider fields of view.  相似文献   

19.
Old rules useful to the designer of optical coatings Optical coatings are usually composed of multilayer film structures which are used to obtain a desired transmittance, reflectance and absorptance from a surface. The spectral characteristic may be due to the intrinsic property of the material (e.g. metal reflectors) or due to interference effects arising from the multilayer stack. The following is a set of guidelines (“old rules”) useful to the designer of optical systems of which coated surfaces are an integral part.  相似文献   

20.
We demonstrate the effect of the pre-growth heat treatment process on the nucleation properties of Ge dots grown on pit-patterned Si(001) substrates. The prefabricated 200 nm diameter pits inherently evolve into truncated inverted pyramids (TIPs) with (110) base edges and a 7°-9° sidewall slope during heat treatment; this morphology transformation is robust against variations in shape and orientation of the pit patterns. Uniform Ge dots with an areal density of 4 × 10(9) cm(-2) were obtained on the Si substrates having TIPs. Each TIP contains four aligned Ge dots locating symmetrically with respect to (110). These dots exhibit an elliptical dome shape with major axis oriented along (100). The nucleation position, shape and spatial orientation of these Ge dots coincide with the calculated surface chemical potential distribution of the TIP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号