首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
The catalytic hydrogenation of benzene on transition metal surfaces is of fundamental importance in petroleum industry. With the aim to improve its efficiency and particularly the selectivity to cyclohexene, in this contribution we perform periodic density functional theory calculations to determine the potential energy surface in the hydrogenation of benzene on Ru(0 0 0 1). By following the Horiuti–Polanyi mechanism with a step-wise addition of hydrogen adatoms, we investigate the adsorption of all the possible reaction intermediates and identify the most favored adsorption configuration for each intermediate. In particular, the most stable isomer for the same C6Hn (n = 8, 9, 10) species are revealed as the most conjugated isomers, which are consistent with those in the gas phase. The elementary hydrogenation reactions of the most stable intermediates are then investigated under different H coverage conditions: the reaction barriers are calculated to be 0.68–0.97 eV at the low H coverage and 0.32–1.14 eV at the high H coverage. The high H coverage reduces significantly the overall barrier height of hydrogenation. With the determined pathway, we propose that the hydrogenation of benzene on Ru(0 0 0 1) follows the mechanism with the step-wise hydrogenation of neighboring C atoms in the ring, i.e., 1–2–3… hydrogenation. The selectivity to cyclohexene on Ru is also discussed, which highlights the importance of the π mode adsorption of benzene and also the adverse effect of secondary reaction process involving the readsorption and hydrogenation of cyclohexene.  相似文献   

2.
We report on the high temperature chemical vapor deposition of ethylene on Ir(1 0 0) and the resulting development of single and multi-layer graphene films. By employing X-ray photoemission electron spectromicroscopy, low energy electron microscopy and related microprobe methods, we investigate nucleation and growth of graphene as a function of the concentration of the chemisorbed carbon lattice gas. Further, we characterize the morphology and crystal structure of graphene as a function of temperature, revealing subtle changes in bonding occurring upon cooling from growth to room temperature. We also identify conditions to grow multi-layer flakes. Their thickness, unambiguously determined through the analysis of the intensity of the Ir 4f and C 1s emission, is correlated to the electron reflectivity at very low kinetic energy. The effective attenuation length of electrons in few-layer graphene is estimated to be 4.4 and 8.4 Å at kinetic energies of 116 and 338 eV, respectively.  相似文献   

3.
The structure and the acoustic phonon branches of graphene on Ru(0 0 0 1) have been experimentally investigated with helium atom scattering (HAS) and analyzed by means of density functional theory (DFT) including Grimme dispersion forces. In-plane interactions are unaffected by the interaction with the substrate. The energy of 16 meV for the vertical rigid vibration of graphene against the Ru(0 0 0 1) surface layer indicates an interlayer effective force constant about five times larger than in graphite. The Rayleigh mode observed for graphene/Ru(0 0 0 1) is almost identical to the one measured on clean Ru(0 0 0 1). This is accounted for by the strong bonding to the substrate, which also explains the previously reported high reflectivity to He atoms of this system. Finally, we report the observation of an additional acoustic branch, closely corresponding to the one already observed by HAS in graphite, which cannot be ascribed to any phonon mode and suggests a possible plasmonic origin.  相似文献   

4.
On the SiC(0 0 0 1) surface (the silicon face of SiC), epitaxial graphene is obtained by sublimation of Si from the substrate. The graphene film is separated from the bulk by a carbon-rich interface layer (hereafter called the buffer layer) which in part covalently binds to the substrate. Its structural and electronic properties are currently under debate. In the present work we report scanning tunneling microscopy (STM) studies of the buffer layer and of quasi-free-standing monolayer graphene (QFMLG) that is obtained by decoupling the buffer layer from the SiC(0 0 0 1) substrate by means of hydrogen intercalation. Atomic resolution STM images of the buffer layer reveal that, within the periodic structural corrugation of this interfacial layer, the arrangement of atoms is topologically identical to that of graphene. After hydrogen intercalation, we show that the resulting QFMLG is relieved from the periodic corrugation and presents no detectable defect sites.  相似文献   

5.
Nanostructured diamond films (NDFs) were grown on fine-polished Si(0 0 1) substrates by radio-frequency plasma-enhanced hot-filament chemical vapor deposition at low gas pressure of approximately 2 Torr. High resolution field-emission scanning electron microscopy (FESEM), X-ray diffraction and Raman scattering spectroscopy were employed to characterize the NDFs. FESEM measurement indicated that diamond nuclei density exceeded 1010 cm−2 after growth for 20 min, which should render potential applications, such as in the fabrication of diamond-related field-emission devices. Photoluminescence excitation characterizations revealed the sharp optical absorption band edge of NDFs, and the band gap is 5.34 eV.  相似文献   

6.
In this work, we have prepared Co‐doped ZnO nanocomposites by zinc nitrate and cobalt sulfate as new precursors via the coprecipitation method and the samples were followed to identify the morphological, optical, structural, and magnetic properties. The XRD patterns revealed the crystalline nature of nanoparticles with hexagonal wurtzite structures, which meant that Co impurity did not disturb the structure of pure ZnO and the minimum crystallite size of nanoparticles was calculated to be around 37 nm. The XRD patterns also showed the lattice parameter increase owing to the incorporation of a Co dopant. The TEM results revealed the sphere‐like particles whose size varied between 56 and 88 nm in diameter at a 4% level of impurity. DRS analysis identified that the band gap energy decreased from 3.18 eV for the pure substance to 2.36 eV for the 10% impure substance. VSM analysis exhibited that the saturation magnetization value increased to 8.4 × 10?3 emu/g for the highest Co content of 10%, which indicated the ferromagnetic behavior of NPs.  相似文献   

7.
The interaction of water with periodically rippled graphene deposited on Ru(0 0 0 1) and nearly-flat graphene/Pt(1 1 1) has been investigated by using high-resolution electron energy loss spectroscopy. Graphene samples were exposed to ambient air humidity as well as to water molecules under controlled conditions in vacuum. In both cases, loss measurements show that water molecules dosed at room temperature dissociate giving rise to C–H bonds. We suggest that water molecules intercalate under graphene and are split by the underlying metal catalyst. On the lattice-mismatched graphene/Ru(0 0 0 1) interface, the corrugation of the graphene overlayer induces site selectivity for H adsorption in ortho and para dimers. On the other hand, no dimer formation occurs for the nearly-flat, multidomain graphene/Pt(1 1 1) interface.  相似文献   

8.
We investigated the molecular adsorption and dissociation of n-butane on a PdO(1 0 1) thin film using temperature-programmed reaction spectroscopy (TPRS) experiments and density functional theory (DFT) calculations. At low coverage, n-butane adsorbs on PdO(1 0 1) in a molecular state that is more strongly bound than n-butane physisorbed on Pd(1 1 1). This molecularly adsorbed state of n-butane on PdO(1 0 1) corresponds to a σ-complex that forms on the rows of coordinatively unsaturated (cus) Pd atoms of the oxide surface. TPRS results show that a fraction of the n-butane layer undergoes C–H bond cleavage below 215 K and that the resulting fragments are completely oxidized by the surface upon continued heating. The evolution of product yields with the n-butane coverage as well as site blocking experiments provide strong evidence that the n-butane σ-complex serves as the precursor to initial C–H bond cleavage of n-butane on PdO(1 0 1). DFT calculations confirm the formation of an n-butane σ-complex on PdO(1 0 1). In the preferred bonding geometry, the n-butane molecule aligns parallel to a cus-Pd row and adopts a so-called η1(2H) configuration with two coordinate H–Pd bonds per molecule. Our DFT calculations also show that σ-complex formation weakens C–H bonds, causing bond elongation and vibrational mode softening. For methane, we predict that coordination with a cus-Pd atom lowers the barrier for C–H bond cleavage on PdO(1 0 1) by more than 100 kJ/mol. These results demonstrate that dative bonding between alkane molecules and cus-Pd atoms serves to electronically activate C–H bonds on PdO(1 0 1) and suggest that adsorbed σ-complexes play a general role as precursors in alkane activation on transition metal oxide surfaces.  相似文献   

9.
10.
Initial growth of heteroepitaxial diamond on Ir (0 0 1)/MgO (0 0 1) was investigated by scanning electron microscopy, reflection high-energy electron diffraction (RHEED) and atomic force microscopy. Bias-enhanced nucleation (BEN) was performed by antenna-edge-type microwave plasma assisted chemical vapor deposition. In BEN, diamond crystallites nucleated and grew along the [−1 1 0] and [1 1 0] directions of iridium. Diamond was likely to nucleate on protruded iridium areas. After BEN, in addition to the diamond diffraction spots, iridium bulk diffraction spots, which were not observed before BEN, were observed by RHEED. The iridium surface appeared to be protruded and changed by the high ion current density in BEN. Under [0 0 1] selective growth conditions, diamond crystallites, which were less than 10 nm in diameter, were etched by H2 plasma. Diamond nucleated areas corresponded to the surface ridges of iridium along the [−1 1 0] and [1 1 0] directions at 10–40 nm intervals before BEN.  相似文献   

11.
The adsorption behavior of atomic oxygen and molecular O2 on the 3C–SiC(1 1 0) surface is investigated by first-principles calculations. The atomic O prefers to be adsorbed at the C top site (C–O) with adsorption energy of −1.95 eV after zero-point energy correction, followed by the C–O–Si bridge site, Si–O–Si bridge site, and the Si top site (Si–O) with adsorption energies of −1.46, −1.36, and −1.13 eV, respectively. The molecular O2 separately trapped by the second nearest neighboring C and Si atoms (C–O–O–Si, M4 type) is the most stable configuration with the adsorption energy of −2.46 eV, which is followed by the Si–O–O–Si (M5 type), C–O–O–Si (M3 type), O–Si–O (M2 type), and Si–O=O (M1 type) configurations with the adsorption energies of −2.24, −1.87, −1.07, and −0.75 eV, respectively. All these molecular O2 adsorption configurations exhibit high tendency to dissociate with the dissociation barriers range of 0.09–0.19 eV. The adsorbed atomic O seems to be easily trapped at the C–O site due to the extremely low diffusion barrier. In addition, the infrared spectra of all the atomic O and molecular O2 adsorption configurations are predicted and compared with available experimental observations.  相似文献   

12.
We report on the conversion of epitaxial monolayer graphene on SiC(0 0 0 1) into decoupled bilayer graphene by performing an annealing step in air. We prove by Raman scattering and photoemission experiments that it has structural and electronic properties that characterize its quasi-free-standing nature. The (6√3 × 6√3)R30° buffer layer underneath the monolayer graphene loses its covalent bonding to the substrate and is converted into a graphene layer due to the oxidation of the SiC surface. The oxygen reacts with the SiC surface without inducing defects in the topmost carbon layers. The high-quality bilayer graphene obtained after air annealing is p-doped and homogeneous over a large area.  相似文献   

13.
In order to develop a fundamental understanding of the adsorption mechanism of thiophenic compounds on TiO2-based adsorbents for ultra-deep desulfurization of liquid hydrocarbon fuels, a density functional theory (DFT) study was conducted on the adsorption of thiophene over the TiO2 anatase (0 0 1) surface. The perfect, O-poor (with oxygen vacancies), and O-rich (with activated O2 on the surface) anatase (0 0 1) surfaces were built, and the interaction of thiophene molecule with these surfaces was examined. The adsorption configuration and adsorption energy on the different surfaces and sites were estimated. The results showed that thiophene may be adsorbed on both the perfect and O-poor surfaces through an interaction between the Ti cations on the surface and the S atom in thiophene, whereas on the O-rich surface through an interaction of the activated O atoms (the dissociatively or associatively adsorbed O2) on the surface with the S atom in thiophene to form a sulfone-like surface species. The adsorption of thiophene on the O-rich surface is significantly stronger than adsorption on the perfect and O-poor surfaces on the basis of the calculated adsorption energies. The results indicate that the activated O2 on the TiO2 anatase (0 0 1) surface may play an important role in the adsorption desulfurization over the TiO2-based adsorbents, and increased concentration of the activated O2 on the surface may result in improvement of the adsorption capacity of the adsorbents.  相似文献   

14.
Efficient CO activation on Rh particles promoted by Mn cocatalysts is important to the activity for the conversion of the syngas (CO and H2) to hydrocarbon and oxygenates. To study the effect of the step edge and promotion of Mn cocatalysts on CO activation, we studied the CO dissociation on Mn-decorated Rh(1 1 1) and stepped Rh(5 5 3) surfaces using density functional theory calculations. We found that the presence of the step edge and Mn stabilizes the transition state and reaction products: compared to clean Rh(1 1 1), calculated barrier for CO dissociation on Mn-decorated Rh(5 5 3) is lowered by about 1.60 eV, and corresponding reaction energies with respect to CO in gas phase changes from endothermic (0.21 eV) to strong exothermic (−1.73 eV). The present work indicates that the addition of Mn cocatalysts and decrease of Rh particle sizes improves greatly the activity of CO dissociation.  相似文献   

15.
Adsorption and reaction of water on the clean and oxygen modified Ir(1 1 1) single crystal surfaces have been studied using temperature programmed desorption (TPD) and molecular beam reactive scattering (MBRS) techniques under ultrahigh vacuum (UHV) conditions. Water dissociates on the clean Ir(1 1 1) surface with a probability (estimated based on production of hydrogen) which decreases from 0.016 to 0.004 ± 0.0015 with increasing water coverages from 0.34 to 2.59 monolayer. Scattering experiments performed at various surface temperatures in the limit of zero coverage yield water dissociation probabilities in the range of 0.0005–0.012 (300–900 K) with an uncertainty expressed as ±20% of the dissociation probability. The apparent activation energy for water dissociation on clean Ir(1 1 1) is estimated to be 170 ± 5 kJ/mol employing MBRS techniques, which probably cannot be applied to TPD measurements with higher water coverages. We speculate that water dissociation occurs on the defects of the Ir(1 1 1) surface. Using isotopically labeled reactants, a strong interaction between adsorbed water and oxygen was found on Ir(1 1 1), indicated by a new water desorption feature at 235 K and scrambled oxygen and water desorption products.  相似文献   

16.
A series of copper thiospinel compounds, CuCo2S4-xSex (x = 0, 0.2, 0.4, 0.6, 0.8), have been successfully synthesized by solid-state reaction and their structure and magnetic properties have been studied. The Rietveld refinements of X-ray diffractions indicate that both the lattice constants and the nearest-neighbor Cu-Cu distances increase with increasing selenium doping. A weakly antiferromagnetic transition occurring at about 4 K is observed in CuCo2S4. Two antiferromagnetic transitions at about 3.5 K and 6 K are observed in selenium-doped samples, which suggest that the exchange couplings associated with Cu-S(Se)-Cu and Cu-Se(S)-Cu, respectively, are responsible for the two antiferromagnetic transitions. Detailed analysis of the experimental results further indicates that the nearest-neighbor molecular field coefficient is comparable to the next-neighbor molecular field coefficient. We propose a reasonable model to explain this phenomenon.  相似文献   

17.
Quasi-free-standing monolayer and bilayer graphene is grown on homoepitaxial layers of 4H-SiC. The SiC epilayers themselves are grown on the Si-face of nominally on-axis semi-insulating substrates using a conventional SiC hot-wall chemical vapor deposition reactor. The epilayers were confirmed to consist entirely of the 4H polytype by low temperature photoluminescence. The doping of the SiC epilayers may be modified allowing for graphene to be grown on a conducing substrate. Graphene growth was performed via thermal decomposition of the surface of the SiC epilayers under Si background pressure in order to achieve control on thickness uniformity over large area. Monolayer and bilayer samples were prepared through the conversion of a carbon buffer layer and monolayer graphene respectively using hydrogen intercalation process. Micro-Raman and reflectance mappings confirmed predominantly quasi-free-standing monolayer and bilayer graphene on samples grown under optimized growth conditions. Measurements of the Hall properties of Van der Pauw structures fabricated on these layers show high charge carrier mobility (>2000 cm2/Vs) and low carrier density (<0.9 × 1013 cm−2) in quasi-free-standing bilayer samples relative to monolayer samples. Also, bilayers on homoepitaxial layers are found to be superior in quality compared to bilayers grown directly on SI substrates.  相似文献   

18.
Intercalation of various elements has become a popular technique to decouple the buffer layer of epitaxial graphene on SiC(0 0 0 1) from the substrate. Among many other elements, oxygen can be used to passivate the SiC interface, causing the buffer layer to transform into graphene. Here, we study a gentle oxidation of the interface by annealing buffer layer and monolayer graphene samples in water vapor. X-ray photoelectron spectroscopy demonstrates the decoupling of the buffer layer from the SiC substrate. Raman spectroscopy is utilized to investigate a possible introduction of defects. Angle-resolved photoemission spectroscopy shows that the electronic structure of the water vapor treated samples. Low-energy electron microscopy (LEEM) measurements demonstrate that the decoupling takes place without changes in the surface morphology. The LEEM reflectivity spectra are discussed in terms of two different interpretations.  相似文献   

19.
The etching behavior of polycrystalline boron-doped diamond (BDD) electrodes and diamond particles with gaseous CO2 at 800 and 900 °C was investigated by field-emission scanning electron microscopy, atomic force microscopy and X-ray photoelectron spectroscopy. Polycrystalline BDD (800 ppm), composed of a mixture of cubic {1 0 0} and triangular {1 1 1} orientated planes, was used so as to pursue the possibility of preferential etching by high temperature CO2 treatment. Nanometer sized pits were observed on the {1 0 0} planes while no change was observable for the {1 1 1} planes when the activation temperature was 800 °C. The difference in the etching behavior by CO2 with regard to the different planes was clarified using diamond particles and comparing with steam activation. The results demonstrate that CO2 activation leads to preferential {1 0 0} etching, whereas steam-activation results in preferential {1 1 1} etching.  相似文献   

20.
The surface chemistry and catalytic conversion of cis- and trans-2-butenes on platinum (1 0 0) facets were characterized via surface-science and catalytic experiments. Temperature-programed desorption studies on Pt(1 0 0) single crystals pointed to the higher hydrogenation probability of the trans isomer at the expense of a lower extent of CC double-bond isomerization. To test these trends under catalytic conditions, shape selective catalysts were prepared by dispersing cubic platinum colloidal nanoparticles (which expose only (1 0 0) facets) onto a high-surface-area silica xerogel support. Infrared absorption spectroscopy and transmission electron microscopy were used to determine the conditions needed to remove the organic surfactants without loosing the original narrow size distribution and cubic shape of the original metal nanoparticles. Catalytic kinetic measurements with these materials corroborated the surface-science predictions, and pointed to a switch in isomerization selectivity from preferential cis-to-trans conversion with Pt(1 0 0) surfaces to the reverse trans-to-cis reaction with Pt(1 1 1) facets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号