首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
abstract Calcium looping method has been considered as one of the efficient options to capture CO2 in the combustion flue gas. CaO-based sorbent is the basis for application of calcium looping and shou...  相似文献   

2.
The glucose mass transfer in the biosynthesis of succinic acid with immobilized Actinobacil us succinogenes cel s has been comparatively analyzed for a bioreactor with mobile bed vs. a stationary basket bioreactor. The process has been considered to occur under substrate and product inhibitory effects. The results indicated that the biore-actor with mobile bed is more efficient for biocatalyst particles with a diameter over 3 mm, while the basket bio-reactor is more efficient for smal er biocatalyst particles and basket bed thickness below 5 mm. The performances of both configurations of immobilized A. succinogenes cell beds were found to be superior to the column packed bed bioreactor.  相似文献   

3.
The selective catalytic reduction(SCR)of NOxwith NH3has been proven to be an efficient technology for NOx conversion to N2.However,the catalysts used for SCR usually suffer from the problem of sulfur poisoning which seriously limits their practical application.This review summarized sulfur poisoning mechanisms of various SCR deNOxcatalysts and strategies to reduce deactivation caused by SO2such as doping metals,control-ling the structures and morphologies of the catalysts,and selecting appropriate supports.The methods and procedures of catalysts preparation and the reaction conditions also have effect on SO2-resistance of the catalysts. Several novel catalyst systems that exhibited good SO2resistance are also introduced.This paper could provide guidance for the development of highly efficient sulfur-tolerant deNOxcatalysts.  相似文献   

4.
A facile and efficient procedure has been developed systematically for the oxidative cleavage of cinna-maldehyde to benzaldehyde by sodium hypochlorite with water as the only solvent in the presence of β-cyclodextrin (abbreviated as β-CD). Different factors influencing cinnamaldehyde oxidation e.g. reaction temperature, the amount of catalyst and oxidant, have been investigated. The yield of benzaldehyde reaches 76% under the optimum conditions (333 K, 4 h, molar ratio of cinnamaldehyde to β-CD is 1:1). Furthermore, a feasible reaction mecha-nism including the formation of benzaldehyde and the two main byproducts (phenylacetaldehyde and epoxide of cinnamaldehyde) has been proposed.  相似文献   

5.
The demand for lithium has been steadily growing in recent years due to the boom of electric cars.High purity lithium is commonly used in the manufacture of battery grade lithium electrolyte.Sulfate residuals originating from acid leaching of lithium ores must be limited to below 20 mg·L?1 during refining.There are methods to remove sulfate such as membrane processing and chemical precipitation using barium salts.However,membrane separation is unable to achieve the required purity while chemical precipitation often causes secondary contamination with barium and requires extra filtration processes that lead to increased processing costs.In this study,we developed a polymeric matrix entrapped with barium ions as a novel adsorbent to selectively adsorb sulfate in aqueous solutions.The adsorbent was prepared by dropwise injection method where alginate droplets were crosslinked with barium to form hydrogel microcapsules.In a typical scenario,the microcapsules had a diameter of 3 mm and contained 5 wt-%alginate.The microcapsules could successfully reduce sulfate concentration in a solution from 100 to 16 mg·L?1,exceeding the removal target.However,the microcapsules were mechanically unstable in the presence of an excess amount of sulfate.Hence,calcium ions were added as a secondary crosslinking agent to improve the integrity of the microcapsules.The two-step Ca/Ba@alginate microcapsules showed an exceptional adsorption performance,reducing the sulfate concentration to as low as 0.02 mg·L?1.Since the sulfate selective microcapsules can be easily removed from the aqueous system and do not result in secondary barium contamination,these Ca/Ba@alginate adsorbents will find applications in ultra-refining of lithium in industry.  相似文献   

6.
Low-temperature selective catalytic reduction of NO_x combined with dust removal technique due to its energy conservation characteristic has been attracted much attention for fume purification. In this work, the MnO_x wrapped PTFE membrane with efficient dust removal and low-temperature NH_3-SCR has been prepared with a facile route. MnO_xwith different crystal structures was uniformly grown around the PTFE fibrils through water bath. The flower-sphere-like MnO_x@PTFE(O-MnO_x@PTFE) and lamellar-interlaced ripple-like MnO_x@PTFE(W-MnO_x@PTFE) have large specific surface area which is favorable for enhancing catalytic performance.Also, the uniformly wrapped W-MnO_xaround the PTFE fibrils optimized the pore structure for ultrafine dust capture. The membrane can almost 100% reject particles that are smaller than 1.0 μm with a low filtration resistance.Meanwhile, W-MnO_x@PTFE with more surface chemisorbed oxygen has the best NO conversion efficiency of 100% at a comparatively low and wide activity temperature window of 160–210 °C, which is far to the thermal limitation of the PTFE. Therefore, this efficient and energy conserving membrane has a bright application prospects for tail gas treatment compared to the original treatment process.  相似文献   

7.
The novel solid acid with both sulfonic and carbonyl acid groups has been synthesized from 3-((2-sulfoethoxy) carbonyl)acrylic acid and tetraethyl orthosilicate (TEOS). The catalytic activities were investigated through the acetalization. The results showed that the novel solid acid was very efficient for the reactions with the high yields. The high acidity, high stability and reusability were the key feature of the novel solid acid. Moreover, the sulfonic and carbonyl acid groups could cooperate during the catalytic process, which improved its catalytic activities. The catalyst shows recyclability, and hold great potential for replacement of homogeneous catalysts.  相似文献   

8.
The solubility of NH_3 in water in multicomponent systems under high pressure is of extreme importance to the new integrated ammonia and urea process. This paper proposes a new method for calculating the vaporliquid equilibria for aqueous ammonia solutions under high pressure. Based on the experimental data of the binary system of NH_3-H_2O in the high concentration range, a model has been established for the activity coefficients of NH_3 and H_2O to describe the non-ideality of the liquid phase; and the modified SIRK equation of state for polar compounds has been used to describe the non-ideality of the vapor phase under high pressure. The reliability of this model has been examined in the light of the experimental data of the solubility of NH_3 in H_2O under high pressure in the systems of NH_3-H_2O-N_2, NH_3-H_2O-N_2-H_2-Ar-CH_4 and NH_2-H_2O-N_2-H_2, the last being from Guerreri et al. Both the accuracy of calculation and the concentration range for applicability of this model have been found to surpass those of Guerrerl's model.  相似文献   

9.
基于SVR-GA模型的浆态管流压力差的预测   总被引:6,自引:0,他引:6       下载免费PDF全文
This paper describes a robust support vector regression (SVR) methodology, which can offer superior performance for important process engineering problems. The method incorporates hybrid support vector regression and genetic algorithm technique (SVR-GA) for efficient tuning of SVR meta-parameters. The algorithm has been applied for prediction of pressure drop of solid liquid slurry flow. A comparison with selected correlations in the lit- erature showed that the developed SVR correlation noticeably improved the prediction of pressure drop over a wide range of operating conditions, physical properties, and pipe diameters.  相似文献   

10.
Polyurea microcapsules containing NiCl2 were prepared by interracial polymerization between diisocyanate and water with triethylamine as a catalyst in water-in-oil emulsion system. The influence of preparation conditions such as the dosage and feed mode of the catalyst, concentration of the encapsulated NiCl2, and concentration and structure of diisocyanates on the breakage of the microcapsules have been evaluated. The results show thatbreakage is strongly dependent on the rate of polymerization and stability of initial emulsion. The improved microcapsules with low breakage have been produced under the optimum conditions. Furthermore, the obtained microcapsules capsules immobilizing NiCl2 as a recyclable catalyst is successfully used in benzaldehyde reduction.  相似文献   

11.
Urea–formaldehyde (UF) resin microcapsules doped with TiO2 nanoparticles were prepared by in situ polymerization, and the properties of the microcapsules, such as the surface morphologies, thermal properties, and chemical elemental composition, were measured by optical microscopy, scanning electron microscopy, thermogravimetric analysis, and energy‐dispersive X‐ray spectrometer analysis. The effects of the presence of ammonium chloride and its concentration and the concentrations of UF resin prepolymer and TiO2 nanoparticles during the reaction and deposition of UF on the microcapsule surface on the properties of the microcapsules were investigated. Enhanced UF resin microcapsules with more stability and mechanical strength could be obtained under the optimal conditions. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

12.
Titanium dioxide is a wide band gap (3.2 eV) semiconductor which is photo-active when irradiated with UV light. For wider scale use of TiO2 as a photocatalyst, its activity needs to be extended to the visible light region (constituting 45% of total incident solar energy). A diffusion flame aerosol reactor (FLAR) with an oxygen lean environment in the particle formation zone has been used to synthesize oxygen deficient titanium suboxide (TiOx with x < 2) nanoparticles. Using a standard-based electron energy loss spectroscopy (EELS) technique, the non-stoichiometry (x in TiOx) in the flame synthesized particles has been quantified with high accuracy (uncertainty less than 3%). Under an oxygen lean environment in the particle formation zone, the non-stoichiometry in the TiOx particles is a function of the flame temperature. The value of x in the flame synthesized TiOx nanoparticles is in the range of 1.88 < x < 1.94. Diffuse reflectance spectra confirmed that the oxygen deficient TiOx particles absorbed visible light. Visible light activity of the TiOx particles is demonstrated by photocatalytic degradation of methyl orange solution under visible light illumination.  相似文献   

13.
FeTiO3/TiO2, a new heterojunction-type photocatalyst working at visible light, was prepared by a simple sol–gel method. Not only did FeTiO3/TiO2 exhibit greatly enhanced photocatalytic activity in decomposing 2-propanol in gas phase and 4-chlorophenol in aqueous solution, but also it induced efficient mineralization of 2-propanol under visible light irradiation (λ ≥ 420 nm). Furthermore, it showed a good photochemical stability in repeated photocatalytic applications. FeTiO3 showed a profound absorption over the entire visible range, and its valence band (VB) position is close to that of TiO2. The unusually high photocatalytic efficiency of the FeTiO3/TiO2 composite was therefore deduced to be caused by hole transfer between the VB of FeTiO3 and TiO2.  相似文献   

14.
In this work, the disinfection of bacteria Escherichia coli and degradation of humic acids, using sunlight, sunlight + TiO2 (Degussa P25) in suspension or TiO2 supported on Ahlstrom paper (NW10) fixed around concentric tubes inside the photoreactor, were investigated in a pilot plant. The inactivation of bacteria E. coli proved to be more efficient (only 1 kJUV/L for 5-log decrease in concentration) when using sunlight and TiO2 in suspension. However, true disinfection was not achieved under the conditions reported in this work. A first-order model was able to fit the photocatalytic deactivation of E. coli ([TiO2] = 50 mg/L) with an inactivation rate constant of 8.21 L/kJ. A Langmuir–Hinshelwood-like model was successfully applied for modelling photolysis and supported-TiO2 photocatalysis of bacteria E. coli, considering an initial latency period, a classical log-linear behaviour and a tail region. The effect of the flow rate between 5 and 15 L/min was negligible in the inactivation of E. coli in the presence of sunlight and supported TiO2. The inactivation rate constant increased with the initial concentration of E. coli. Almost no bacterial regrowth was observed in dark conditions during 24 h after illumination of E. coli suspension until complete deactivation. The humic acids (HA) degradation was also investigated by solar photocatalysis with suspended and supported TiO2 and exposure to sunlight-only, in a CPC photoreactor. Supported-TiO2 photocatalysis of HA originated 70% concentration reduction after QUV ≈ 14 kJ/L, whereas only 20% reduction was obtained by photolysis and slurry photocatalysis. First-order kinetic constants of 0.088 and 0.010 L/kJ were obtained, respectively, for suspended and supported TiO2.  相似文献   

15.
《Ceramics International》2016,42(10):12194-12201
TiO2 nanoparticles are typically employed to construct the porous films for quantum dot-sensitized solar cells (QDSCs). However, undesirable interface charge recombination at grain boundaries would hinder the efficient electron transport to the conducting substrate, giving rise to the decline of open-circuit voltage (Voc). In this work, vertically aligned architectures of oriented one-dimensional (1D) TiO2 nanorod arrays hydrothermally grown on substrates pave a way in designing highly efficient QDSCs with efficient radial-directional charge transport. SEM, TEM, XRD, and Raman spectroscopy were employed to characterize the as-prepared TiO2 nanorods, showing the rutile phase with single-crystalline structure. The homogeneous deposition of CdS/CdSe QDs on the surface of TiO2 nanorods has been achieved by in-situ grown strategies (i.e., successive ionic layer absorption and reaction, and chemical bath deposition). An extremely high Voc value up to 0.77 V has been achieved for CdS/CdSe QDSCs based on the well-ordered 1D nanorod arrays. To the best of our knowledge, it is the highest Voc reported for TiO2-based QDSCs. Dependencies of photovoltaic performance, optical absorption, and interfacial charge behavior on the length of nanorods were systematically investigated. A 1.7 μm nanorod-array photoelectrode-based QDSC delivers a remarkable power conversion efficiency up to 3.57% under simulated AM 1.5 100 mW cm−2 illumination, attributed to the balance of competition between the increase of QD loading and suppression of interfacial recombination. This work highlights the combination of QDs with high absorption coefficient 1D architectures possessing efficient charge transport for constructing high efficiency solar cells.  相似文献   

16.
CO oxidation over Au/TiO2 prepared from metal-organic gold complexes   总被引:1,自引:0,他引:1  
A series of Au/TiO2 catalysts has been prepared from precursors of various metal-organic gold complexes (Au n , n = 2–4) and their catalytic activity for CO oxidation studied. The Au/TiO2 catalyst synthesized from a tetranuclear gold complex shows the best performance for CO oxidation with transmission electron microscopy of this catalyst indicating an average gold particle size of 3.1 nm.  相似文献   

17.
BACKGROUND: In recent decades, the increase in antibiotic‐resistant bacteria has become one of the most significant problems in public health. Titanium dioxide (TiO2) has the potential to inactivate antibiotic‐resistant bacteria. RESULTS: In this study, TiO2 that had been activated by ultraviolet A (UV‐A) irradiation was used to inactivate the following three antibiotic‐resistant bacteria in suspension: methicillin‐resistant Staphylococcus aureus (MRSA), multidrug‐resistant Acinetobacter baumannii (MDRAB) and vancomycin‐resistant Enterococcus faecalis (VRE). For comparison, the following antibiotic‐sensitive strains were used as controls: S. aureus (MSSA), A. baumannii (MDSAB), E. faecalis (VSE), Escherichia coli and the bacteriophage MS2. Results demonstrated that MSSA and MRSA were equally susceptible to TiO2 photocatalysis, and the susceptibility of MDRAB was double that of MDSAB (P < 0.05). The susceptibility of VSE was 2.4 times that of VRE (P < 0.05). The results obtained from multiple regression analysis indicated that TiO2 reaction time had the greatest influence on microbial survival following TiO2 exposure in the presence of UV‐A. CONCLUSION: The development of antibiotic resistance does not appear to be correlated to increased resistance to TiO2 photocatalysis, but TiO2 in the presence of UV‐A still effectively reduces the number of antibiotic‐resistant microbes in suspension by 1–3 logs. Copyright © 2010 Society of Chemical Industry  相似文献   

18.
Nanocrystalline TiO2 and Ti1?xVxO2 (x = 0.01) powders have been prepared by thermal decomposition, in air, of amorphous precursors resulting from the freeze‐drying of appropriate solutions. In addition, TiO2?xNy (anatase and rutile) and TiOxNy (rock‐salt) have been prepared by thermal treatment in ammonia of a crystalline precursor (TiO2 obtained at 673 K). TEM and SEM images, as well as the analysis of the X‐ray diffraction (XRD) patterns, show the nanoparticulated character of those solids obtained at low temperatures, with typical particle sizes in the 10–20 nm range when prepared at 673 K. The UV–Vis results indicate both the insertion of V in the anatase lattice and the feasibility of nitridation at low temperatures. The photocatalytic properties of these materials (as prepared and after their incorporation to mortar samples) in the degradation of nitrogen oxides have been preliminary evaluated. Although N‐doping enhances the photocatalytic activity of the TiO2 matrix, V‐doping worsens it.  相似文献   

19.
A structural design featuring rattle‐type silver/titania (Ag/TiO2) core/shell, that is, Ag@TiO2, composite microcapsules is produced. The TiO2 shell protects the encapsulated, movable Ag nanoparticles from breaking away under moderate loading, minimizing hence adverse environmental and biological exposure due to the metal loss, whereas the mesoporous shell serves as conduits for Ag ions released from the caged Ag nanoparticles to kill Escherichia coli in aqueous solutions under dark condition. The anatase TiO2 shell imparts an additional, synergistic photocatalysis activity under ultraviolet irradiation. A pronouncedly enhanced photocatalysis activity results when the Ag@TiO2 composite capsules were thermally annealed under vacuum. This “rattle‐in‐ball” hybrid architecture enables bifunctional bactericide and photocatalysis capability under both light and dark conditions, as well as mitigated environmental and biological impact in practical use.  相似文献   

20.
BACKGROUND: Ballast water discharge from ships is regarded as one of the four major risk factors that threaten global marine environmental safety, and ballast water treatment is vital to prevent the introduction of potentially invasive species. The UV/Ag? TiO2/O3 process has been investigated for its potential use for ballast water treatment using Escherichia coli (E. coli) as an indicator bacterium. Inactivation curves were obtained, and the occurrence of oxidants was studied. RESULTS: Compared with individual unit processes with ozone or UV/Ag? TiO2, the inactivation of E. coli by the combined UV/Ag? TiO2/O3 process was enhanced, and the inactivation efficiency was improved with increasing ultraviolet intensity and ozone dose. The initial total residual oxidant (TRO) concentration was positively correlated with ozone dose, and resulted in faster decay rate for lower initial concentration. Persistence of TRO resulted in a cumulative bacteria mortality in the effluent. CONCLUSION: The UV/Ag? TiO2/O3 process was found to be efficient for E. coli inactivation in simulated ballast water. Copyright © 2011 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号