首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
《辽宁化工》2021,50(1)
采用铁炭微电解-Fenton试剂处理制药废水。设计处理水量:物化预处理2 m~3·h~(-1)、生化处理3 m~3·h~(-1)。运行结果表明,该工艺处理效果良好,出水p H6~9,COD≤500 mg·L~(-1),SS≤400 mg·L~(-1),NH_3-N≤50 mg·L~(-1),甲苯≤0.1 mg·L~(-1),氟化物≤10 mg·L~(-1),三乙胺≤1.08 mg·L~(-1),DMF≤0.45 mg·L~(-1),盐分≤5 000 mg·L~(-1),出水水质优于设计指标要求。  相似文献   

2.
根据草甘膦的性质及其产生废水的特性,提出了草甘膦废水的适合处理的技术。采用正交实验法,研究了微电解-Fenton氧化技术对草甘膦废水中COD、甲醛含量的影响,发现在最佳处理条件下草甘膦废水的COD、甲醛去除率可达到92.1%、95.3%,达到国家《污水综合排放标准》(GB 8978—1996)工业二类废水排放标准,减轻了污水处理企业的压力。  相似文献   

3.
田存萍  郭士元 《辽宁化工》2015,(1):25-26,31
针对橡胶助剂废水的特点,提出应用微电解-Fenton氧化联合工艺预处理此类废水。实验结果表明:微电解-Fenton氧化联合的预处理工艺可以提高废水的可生化性,再加上后续的生化处理,整套工艺可以使废水COD从4 127 mg/L降至240 mg/L,脱除率达到94%。  相似文献   

4.
通过实验研究了微电解和Fenton高级氧化单独处理DDNP废水,结果表明:两者单独处理DDNP废水时,COD去除率可分别达到60.28%、80.54%。同时对微电解与Fenton耦合预处理DDNP废水进行了实验研究,静态实验结果显示,用这一方法在降低成本的同时,COD去除率可进一步提高,耦合效果明显;动态处理实验结果表明,连续运行156 h,在前72 h内,其COD去除率在80%以上。  相似文献   

5.
某制药厂废水处理工程,采用微电解/Fenton氧化/水解酸化/生物接触氧化组合工艺处理制药废水,根据实际运行情况分析,该工艺对制药废水有良好的处理效果,耐冲击负荷强、运行稳定,该工程从2016年6月运行至今出水水质达到GB8978-1996《污水综合排放标准》中的三级标准.  相似文献   

6.
研究了利用新型多元微电解联合催化氧化技术处理高浓度制药废水。在制药废水pH=3.5时,随着微电解处理停留时间的延长,其COD去除率不断上升,最高可达60%。催化氧化过程中使用双氧水为氧化剂,最佳添加量和反应pH分别为0.2%、3.0。为保证微电解稳定高效,进行了两级微电解+催化氧化处理制药废水的中试研究。结果表明,两级微电解耦合催化氧化处理制药废水中试COD去除效果稳定,微电解停留3 h时,最高去除率可达68.5%。  相似文献   

7.
采用铁炭微电解-Fenton氧化-生物接触氧化组合工艺处理石化废水,考察了不同因素对各单元废水处理效果的影响。结果表明:当铁炭质量比为1.5∶1,pH值为4.0,HRT为120min时,铁炭微电解单元出水CODCr的质量浓度为420mg/L,单级CODCr去除率为67.57%,出水m(BOD5)/m(CODCr)值由0.020.03升高至0.30;当H2O2投加量为3.0mL/L,pH值为3.5,反应时间为60min时,Fenton氧化单元出水CODCr的质量浓度为130mg/L,单级CODCr的去除率为72.17%,出水m(BOD5)/m(CODCr)值由0.30进一步升高至0.58。经过预处理的出水再进行生物接触氧化处理,出水CODCr的质量浓度小于20mg/L。该组合工艺对CODCr的总去除率高达98.76%,表明物化预处理-生化法组合工艺对此类可生化性较差且组成复杂的石化废水具有比较理想的处理效果。  相似文献   

8.
微电解-Fenton氧化组合预处理苯胺废水的研究   总被引:2,自引:0,他引:2  
采用微电解--Fenton氧化组合工艺预处理高浓度苯胺废水.实验结果表明微电解的最佳条件为pH=3.0,反应时间3 h;Fenton氧化的最佳条件是H2O2投加质量浓度1.5 g/L,pH=3.0,反应时间2 h,苯胺的总去除率达到96.1%,COD的总去除率达到75%.苯胺经过微电解-Fenton组合处理,在紫外区230、280 nm处的两个吸收峰都明显减小,助色基团-NH-被破坏,胺基变成铵根离子进入溶液,苯环类物质发生了开环反应,生成中间产物戊烯酸,最终氧化成H2O和CO2.  相似文献   

9.
铁碳微电解-Fenton氧化预处理头孢菌素废水应用性研究   总被引:2,自引:0,他引:2  
研究了工程项目中,铁碳微电解-Fenton氧化组合工艺预处理头孢菌素废水的实际效果,在现场调试过程中采用单因素分析法确定了各参数的最佳反应条件值。结果表明,在高浓度废水COD为60~120 g/L、铁碳比为1:1、反应时间为100 min、pH为3时,运用铁碳微电解可以对废水COD去除率达到30%左右;以铁碳微电解出水为基础,调节pH为2.5,H2O2(27.5%)投加量为20mL/L,Fe SO4·7H2O(10%)投加量为22g/L,反应时间为60min,在室温下对原水的COD去除率在65%左右。BOD5/COD也由原来的不足0.24提升到了0.35左右,提高了废水的可生化性。  相似文献   

10.
周今华  肖群 《广东化工》2012,39(6):333-334,336
采用微电解、催化氧化预处理后厌氧酸化、加药除硫、生化处理工艺在制药废水治理上的应用,该工艺自2008年10月投产至今处理效果稳定,处理效率达90%以上,出水COD浓度均在80 mg/L左右。  相似文献   

11.
王会芳  杨瑞洪 《广州化工》2014,(17):113-114,203
采用Fenton法对高浓度制药废水进行预处理实验。主要考察了Fenton试剂氧化法预处理高浓度制药废水的影响因素,主要讨论pH值、FeSO4·7H2O投加量、反应时间对Fenton氧化工艺对制药废水中CODCr处理效果的影响。实验结果显示,pH值为4、反应时间100 min、FeSO4·7H2O投加量为0.024 mol/L、H2O2/Fe2+投加比为11∶1,CODCr处理去除率为52.1%,可生化性BOD/COD为0.57,效果最为理想。  相似文献   

12.
微电解+Fenton氧化组合工艺处理硝基苯废水的实验研究   总被引:2,自引:0,他引:2  
硝基苯是一种重要的化工原料,广泛应用于医药、农药等领域。硝基苯生产废水毒性大,COD值高,其中大部分都是生物难以降解的污染物质,一般不能直接进人生化系统进行处理.需对废水进行物化预处理后再进行生物处理。Fe—C微电解与Fenton氧化具有较高的氧化还原能力.是处理高浓度有机废水的较好方法,近十年来在工业废水预处理方面被广泛运用。  相似文献   

13.
Fenton氧化-活性炭吸附协同深度处理抗生素制药废水研究   总被引:6,自引:0,他引:6  
采用Fenton氧化-活性炭吸附协同处理工艺对抗生素制药废水二级生化出水进行了研究。探讨了温度、pH值、H2O2投加量、Fe2 投加量、反应时间,活性炭投加量及投加方式对COD去除率的影响。结果表明:在温度为30℃,pH值为5,H2O2(30%)投加量为300mg/L,FeSO4·7H2O投加量为80mg/L,反应时间为120min,活性炭投加量为50mg/L且与Fenton试剂同时加入时,COD去除率可达68.5%,处理出水达到了国家一级排放标准。  相似文献   

14.
论文考察了铁-炭微电解技术对某制药企业废水处理站二级生物处理出水的深度处理效果,以及对难降解生产废水和混合生产废水的预处理效果。结果表明:铁-炭微电解对废水处理站二级生物处理出水的TOC去除不明显,但使废水可生化性显著提高;对排放难降解污染负荷的生产废水的TOC去除率高于30%,其中难生物降解组分与可生物降解组分得到同比例去除。物料衡算结果表明,对小水量、高浓度、难降解的生产工段废水进行铁炭微电解预处理,污染物去除效果明显优于混合生产废水。  相似文献   

15.
芬顿氧化法处理高浓度霜脲氰废水的实验研究   总被引:1,自引:0,他引:1  
采用Fenton试剂氧化法对高浓度霜脲氰废水进行处理,考察其对CODcr及NH3-N的降解效果。实验结果表明,废水初始pH、七水硫酸亚铁、双氧水投加量和反应时间均对废水的CODcr及NH3-N去除率产生影响。霜脲氰废水处理条件为:pH=4,七水硫酸亚铁投加量5 g/L,双氧水投加量100 ml/L,反应时间100 min。CODcr去除率最高达45.14%,NH3-N去除率最高为39.98%。  相似文献   

16.
采用Fenton氧化对焦化废水进行了深度处理。结果表明:Fenton氧化反应迅速,可迅速降低焦化废水生化出水的COD;H2O2和Fe2+的投加量对Fenton氧化具有明显的影响;pH=3时反应体系具有最佳的COD去除效果。在H2O2投加量为1.994 mL/L,FeSO4.7H2O投加量为0.543 g/L,pH=3,温度为35℃的条件下,反应出水COD低于100 mg/L,去除率可达72.7%;Fenton氧化可有效去除生化出水中的难降解有机物。实验结果表明Fenton氧化是深度处理焦化废水的有效工艺。  相似文献   

17.
利用粉煤灰作为吸附剂,分别对生化处理前焦化废水和生化处理后焦化废水进行了吸附处理,并将处理效果进行了对比,考察了pH值,药剂投加量,吸附时间,吸附温度等因素对处理效果的影响,得出最佳处理条件为:废水pH值为5左右时,每100 mL废水中加入6 g粉煤灰,吸附时间为40 min,处理后焦化废水的COD和色度可达污水综合排放标准(GB8978—96)中二级排放标准。对吸附处理后的焦化废水利用Fenton试剂进一步氧化处理,每升废水中投加1.40 g FeSO_4,1 mL质量分数为30%双氧水,氧化30 min后,废水中COD、色度以及含油量均达到污水综合排放标准(GB8978—96)中一级排放标准,并且此种处理方法比单独用Fenton氧化法处理,每升废水可节约3 mL双氧水和4.2 g FeSO_4,大大减少了药剂使用量,减少了废水处理的成本。  相似文献   

18.
采用曝气微电解对焦化废水进行预处理,试验结果表明:当焦化废水调节pH值2~3,反应停留时间120min,H_2O_2(30%)投加量500mg/L,铁屑与炭料之比为1.5:1时,进水COD_G为24800mg/L,NH_3-N为12000mg/L,色度为225倍时,出水COD_G为11360mg/L,NH_3-N为6924mg/L,色度为30倍。反应器的COD_G去除负荷达到88.76kg/ m~3·d,NH_3-N去除负荷达到33.52kg/m~3·d,废水的可生化性得到提高,BOD_5/COD_G由0.14提高到0.35。  相似文献   

19.
Fenton试剂氧化法对染料中间体废水的深度处理   总被引:1,自引:0,他引:1  
以实际染料中间体废水经铁催化内电解、水解酸化、好氧生化组合工艺处理后的出水为研究对象,考察了Fenton试剂氧化法深度处理染料中间体废水的效果和影响因素。当进水CODcr为187.5mg/L、色度为1085倍时,出水CODcr下降到59.2mg/L,去除率为68.4%;色度下降到129倍,去除率为88.1%。  相似文献   

20.
微波与芬顿氧化联合处理染料废水   总被引:3,自引:0,他引:3  
丁绍兰  王睿  程春蕾  王蓬 《精细化工》2008,25(4):384-387
以染料化工废水为研究对象,用正交实验的方法,进行了微波单独消解以及微波与芬顿氧化联合处理染料废水的研究,确定了最优的处理条件。微波单独消解染料废水的最优条件是:微波照射功率900 W、照射时间12 min、活性炭用量3 g、pH=4,该条件下CODCr的去除率为37.3%,色度由800倍降到600倍。微波与芬顿氧化联合处理染料废水的最优条件是:微波照射功率900 W、照射时间8 min、芬顿试剂V(H2O2)∶V(污水)=2∶1000、pH=3、活性炭用量为1 g,该条件下CODCr的去除率为49.9%,色度由1 000倍降到0。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号