首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
杜永勤 《焊接》2004,(2):20-22,36
分析了用于钛/钢复合板的SB-265-Gr1钛薄板的焊接性及焊接工艺特点,制定了相应的焊接工艺;经力学性能、硬度及金相组织分析,表明钛薄板接头性能满足钛/钢复合板加工设备使用要求。  相似文献   

2.
综合分析了已有钛/钢复合板焊接的研究成果,基于钛与钢焊接与连接的冶金特性,归纳总结并剖析了钛板搭接焊和对接焊、复合板过渡焊接工艺过程和焊缝金属冶金特点及相关力学性能,提出了未来钛/钢复合板焊接研究的重点发展方向及相关科学问题,希望对该领域的基础研究及工程应用提供有价值的参考.  相似文献   

3.
采用了四种不同的焊接工艺,分别对TA2/16MnR、TA2/Q235B两种复合板钢基层进行了焊接实验,对比分析了焊缝两侧钛复层的氧化程度、焊缝X射线探伤结果、机械性能检测结果,证明采用合适的埋弧焊工艺,能够得到满意的焊接接头。  相似文献   

4.
由于钛与钢焊接互熔时所产生的中间化合物是脆性组织,所以钛钢复合板在焊接安装中,基层碳钢与复层钛板不具有良好的异种金属的焊接性,所以在接头设计及焊接工艺制定中都需要采取一些特殊的措施.本文结合火力发电厂烟囱钢内筒钛钢复合板的焊接试验研究与施工过程控制,对该焊接工艺进行了较为详细的介绍.  相似文献   

5.
研究3 mm厚的钛/钢复合板在爆炸焊接工艺技术条件下,采用不同药量的低爆速炸药,通过从起爆端开始沿爆轰长度方向对结合界面进行波纹检测及氧化和熔化研究,研究低爆速炸药不同用药量时在钛/钢复合板的稳定爆轰长度,为长度≥4 m钛/钢复合板爆炸焊接工艺参数的制定建立基础.  相似文献   

6.
对比分析了我国钛-钢复合板标准对覆材的要求和使用对覆层材料的要求存在的矛盾,并针对这些问题进行了探讨,最终得到:(1)压力容器用钛-钢复合板质量除考虑常规的外型尺寸外,应侧重考虑覆层的化学成分和复合板的整体力学性能、工艺性能,对覆层强度不应作为考虑依据;(2)为了提高钛-钢复合板的质量,更充分地发挥复合板的功能性.推荐尽可能采用杂质含量低、强度指标偏低牌号的钛作为覆层金属;(3)建议在修订钛-钢复合板材标准时,应明确覆层的力学性能指标不作为验收依据。  相似文献   

7.
采用爆炸焊接技术制备尺寸为4260 mm×4260 mm×(6.5+32) mm的钛-钢复合板。采用超声波无损检测、相控阵波形显微镜、金相显微镜和扫描电子显微镜对复合材料板材的力学性能和界面形态进行分析。结果表明,当爆速、密度、炸药高度和间隔距离分别为2200~2270 m/s、0.80~0.82 g/cm3、45.0~46.0 mm和8.0~11.0 mm时,制备出的板材各项力学性能满足技术指标ASTM B898-2020。界面的波形为典型波纹状结合,界面清晰均匀,波形在漩涡区存在少量熔化,波幅和波长的比值为0.15~0.25,且在比值为0.2左右时,产品的剪切强度最高。本研究为大规格钛-钢复合板的制备提供工艺方法,并发现大规格钛-钢复合板的界面特点,为后续优化复合板爆炸焊接工艺提供理论指导。  相似文献   

8.
采用电阻炉对爆炸焊接钛-铝复合板进行退火处理,利用万能材料试验机、SEM、EDS和XRD研究了退火工艺对爆炸焊接钛铝复合板组织与性能的影响。结果表明,在400℃退火时,保温时间3~10 h对钛-铝复合板界面的剪切强度的影响不大;当退火温度≥450℃时,随着保温时间的延长,复合板的剪切强度开始逐渐上升,到达一峰值后,随着保温时间的继续延长,界面剪切强度开始下降。爆炸焊接钛-铝复合板在450℃、保温时间≥10 h和490℃、保温时间≥3 h退火处理时,界面结合区有中间化合物Al3Ti生成。爆炸焊接钛-铝复合板合适的退火工艺选为450℃保温3 h。  相似文献   

9.
介绍了大型换热器钛-钢复合板焊接接头的形式、焊接工艺、热处理工艺及质量评定方法。采用渗透探伤、氦气检漏、热气循环、超声波检测等方法对焊缝及设备的整体性能进行评价,可以准确地对钛焊缝的质量进行检测和控制。同时,对设备进行热气循环实验以模拟实际使用工况,达到检测设备耐热性能的目的。  相似文献   

10.
通过爆炸焊接技术制备的钛/铝复合板可兼具钛合金耐腐蚀性和铝合金低成本的优点。对钛/铝复合板爆炸焊接技术的研究进展进行介绍,论述了炸药种类、质量比R、基覆板间距及爆炸焊接窗口等主要工艺参数对钛/铝复合板组织和性能的影响;分析了影响钛/铝复合板结合界面的主要因素——金属间化合物种类、扩散层和界面波形;对钛/铝复合板硬度、抗剪切强度、抗拉强度及拉伸断口的研究进行了汇总分析。最后,指出了钛/铝复合板爆炸焊接工艺研究的重点发展方向。  相似文献   

11.
铝/钛/钢爆炸复合板性能研究   总被引:1,自引:0,他引:1  
通过试验加工了船用铝/钛/钢(5083/1060/TAl/CCS-B)爆炸焊接复合板,并对其结合质量、力学性能及界面形态进行了研究.结果表明,将纯铝板1060和钛板TA1作为中间过渡层后,复合板的结合质量良好,且铝/钛界面的剪切强度达到85 MPa以上,其力学性能也均达到了相应标准;钛/钢界面呈规则的正弦波形,产生了较明显的塑性变形;铝/钛界面比较平直,波长较大,波幅较小.  相似文献   

12.
钛/钢爆炸焊接界面区形变特征研究   总被引:4,自引:0,他引:4  
详细观察了钛/钢爆炸焊接界面区内的变形组织特征,研究了复合板的钢侧塑性变形层和钛侧绝热剪切线与焊接工艺参数的关系。结果表明,过大或过小的变形层都将导致界面区内产生有害缺陷。合理的变形层宽度应控制在50μm ̄200μm之间,绝热剪切线长度不宜超过1000μm。  相似文献   

13.
国内某化工项目使用爆炸焊接钛/钢复合板,除了对结合性能有高于标准要求的指标外,对界面结合的均匀性也提出要求。目前,对界面结合均匀性的判定采用常规的超声脉冲回波法难以实现,采用常规超声C扫检测速度较慢,无法满足大批量的生产进度要求。国内首次将相控阵技术应用到爆炸焊接层状金属复合板产品检测和验收中。相控阵检测通过电子扫查技术,大大提升了检测效率,同时结合C扫描像,使得爆炸焊接钛/钢复合板界面波纹的辨别与判定分析变得清晰直观,并与结合性能有一定的对应关系。  相似文献   

14.
分别采用等厚度装药及分段装药两种不同的装药方式制备了钛/钢复合板,研究了金属复合板在爆炸焊接过程中爆炸压力分布及覆层金属变形规律,并对所制备的Gr1/Gr70爆炸复合板结合界面的微观组织特征和力学性能进行了分析。结果表明,采用分段装药工艺所制备的大面积钛/钢复合板界面无分层、夹杂等缺陷,且各项力学性能均符合ASTM B898—2005标准,能够满足装备的使用要求。  相似文献   

15.
大型钛-钢复合板容器的焊接   总被引:3,自引:1,他引:2  
对钛一钢复合板焊接时存在的难度和特殊性比较全面地叙述了焊接过程中采取的相应措施.对焊接用保护罩进行了精心研究制作,分析了在低温下焊接产生的缺陷和处理方法,对坡口形式、焊材选择、气体保护措施及清洁措施进行了详细说明.  相似文献   

16.
我们曾用爆炸轧制的钛—钢复合板制造了几个大型容器,其中一个直径约为3.2~3.8米,高度约为11~12米。它是用长3米、宽1米的钛—钢复合板拼接而成的。复合板基层为12毫米厚的A3钢,复  相似文献   

17.
研究了热加工工艺对钛-钢复合板界面力学性能和显微组织的影响。测试了在A,B,C,D4种温度下热轧复合板界面的力学性能,用金相显微镜及扫描电镜观察了界面显微组织并分析了界面的成分。结果表明,在A,B2种温度下轧制的钛-钢复合板界面机械性能良好,延伸率高,其剪切强度不但可保持坯料原有的水平,甚至还略有增加。在C,D2种温度下轧制的钛-钢复合板界面机械性能相对较低,延伸率较高,但剪切强度要比爆炸复合坯料低,尤其是D加热温度,轧制后界面剪切强度急剧下降。热轧的终轧温度也是影响钛-钢复合板界面结合性能的重要因素。在低于相转变温度的合适温区热轧,且终轧温度合适,获得的钛-钢复合板结合界面无爆炸波纹,没有污染,生产的脆性化合物极细小,组织类同于钛材完全退火的等轴组织。  相似文献   

18.
任世宏  李巍  王迎君 《电焊机》2003,33(12):39-43
钛和钛合金是一种优良的耐腐蚀性材料,近年来已在石油化工、冶金、海洋工程等方面广泛应用。在此就钛复合板容器设备的制造,从材料复验、划线以及下料、筒节成形、焊接、探伤和返修等方面作了介绍,重点讲述了钛复合板容器制造中的难点以及要注意的问题。采用流程图的方式对钛复合板容器设备的制造过程作了简明叙述。  相似文献   

19.
大面积钛/钢复合板爆炸焊接过程的数值模拟   总被引:3,自引:0,他引:3  
利用大型非线性有限元程序ANSYS/LS-DYNA对大面积钛/钢复合板的焊接过程进行数值模拟,研究了覆板的应力情况,给出了覆板上几个特殊点的应力、等效塑性应变等随时间的变化曲线,从理论上对爆炸焊接裂纹产生的原因进行了分析研究,为进一步合理选择爆炸焊接参数、预防裂纹产生和实现大面积复合板的批量生产提供了依据.  相似文献   

20.
采用Gleeble-3500热模拟试验机进行高温等温压缩实验,研究了爆炸焊接钛铝复合板在变形温度为300~500 ℃、应变速率为0.1~10 s-1条件下的热变形行为,利用动态材料模型构建了钛铝复合板热加工图,并基于热加工图进行了钛铝复合板热轧工艺验证实验。结果表明:钛铝复合板属于正应变速率敏感材料;在热加工图中变形温度为420~460 ℃、应变速率为1.6~6.3 s-1时,功率耗散效率达到0.64~0.72,该区域对应的工艺参数适合进行钛铝复合板热轧;热轧后实验板材界面结合良好,具有良好的力学性能和钣金成形性能。钛铝复合板在热轧过程中的变形机制为:变形抗力低、流动快的铝层在自身发生塑性变形的同时牵引着钛层一起发生塑性变形,其中铝层是热变形,钛层为冷变形。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号